Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

patersongroup

Phase II - Environmental Site Assessment

1545 Bank Street Ottawa, Ontario

Prepared For

Financial Eastern Star Group

August 27, 2018

Report: PE4330-2

TABLE OF CONTENTS

EXE	CUTIV	'E SUMMARY	iii
1.0	INTF	RODUCTION	1
	1.1	Site Description	1
	1.2	Property Ownership	1
	1.3	Current and Proposed Future Uses	
	1.4	Applicable Site Condition Standard	2
2.0	BAC	KGROUND INFORMATION	2
	2.1	Physical Setting	2
	2.2	Past Investigations	2
3.0	SCO	PE OF INVESTIGATION	5
	3.1	Overview of Site Investigation	5
	3.2	Media Investigated	5
	3.3	Phase I Conceptual Site Model	5
	3.4	Deviations from Sampling and Analysis Plan	7
	3.5	Impediments	
4.0	INVE	ESTIGATION METHOD	7
	4.1	Subsurface Investigation	7
	4.2	Soil Sampling	8
	4.3	Field Screening Measurements	8
	4.4	Groundwater Monitoring Well Installation	9
	4.5	Field Measurement of Water Quality Parameters	10
	4.6	Groundwater Sampling	10
	4.7	Analytical Testing	10
	4.8	Residue Management	13
	4.9	Elevation Surveying	13
	4.10	Quality Assurance and Quality Control Measures	13
5.0	REV	IEW AND EVALUATION	13
	5.1	Geology	13
	5.2	Groundwater Elevations, Flow Direction, and Hydraulic Gradient	14
	5.3	Fine-Medium Soil Texture	14
	5.4	Soil: Field Screening	14
	5.5	Soil Quality	15
	5.6	Groundwater Quality	20
	5.7	Quality Assurance and Quality Control Results	29
	5.8	Phase II Conceptual Site Model	30
6.0	CON	ICLUSIONS	37
7.0	STA	TEMENT OF LIMITATIONS	39

1545 Bank Street, Ottawa, Ontario

Ottawa Ki

Kingston

North Bay

List of Figures

Figure 1 - Key Plan

Drawing PE4330-3 – Analytical Testing Plan

Drawing PE4330-4 – Groundwater Contour Plan

Drawing PE4330-5A - Analytical Testing Plan - Soil (BTEX)

Drawing PE4330-5B- Analytical Testing Plan - Soil (PHC (F₁-F₄), VOCs, PAHs)

Drawing PE4330-6A – Analytical Testing Plan – Groundwater (BTEX, VOCs)

Drawing PE4330-6B – Analytical Testing Plan – Groundwater (PHC (F₁-F₄))

Drawing PE4330-6C – Analytical Testing Plan – Groundwater (PAHs)

Drawing PE4330-7A - Cross-Section A-A' - Soil (BTEX)

Drawing PE4330-7B- Cross-Section A-A' - Soil (PHC (F₁-F₄), VOCs, PAHs)

Drawing PE4330-7C – Cross-Section A-A' – Groundwater (BTEX/VOCs)

Drawing PE4330-7D – Cross-Section A-A' – Groundwater (PHCs)

Drawing PE4330-8A - Cross-Section B-B' - Soil (BTEX, PHC (F₁-F₄), VOCs, PAHs)

Drawing PE4330-8B - Cross-Section B-B' - Groundwater (BTEX/VOCs)

Drawing PE4330-8C – Cross-Section B-B' – Groundwater (PHC (F₁-F₄))

Drawing PE4330-8D – Cross-Section B-B' – Groundwater (PAHs)

Drawing PE4330-9 – Contaminant Transport Diagram

List of Appendices

Appendix 1 Sampling and Analysis Plan

Soil Profile and Test Data Sheets

Symbols and Terms

Laboratory Certificates of Analysis

EXECUTIVE SUMMARY

Assessment

A Phase II-Environmental Site Assessment (ESA) was conducted for the property addressed 1545 Bank Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the Areas of Potential Environmental Concern for the subject site identified during the Phase I ESA. The Phase II-ESA consisted of drilling a total of (10) boreholes, six of which were completed as groundwater monitoring wells. The Phase II ESA summarizes the findings of three (3) field programs conducted during the interim of 2011 through 2018. Of the six (6) monitoring wells placed onsite, three (3) were readily located during the current investigation.

Soil samples were obtained from the boreholes and were screened using visual observations and vapour measurements. Site soils generally consist of a layer of fill material, over silty clay or silty sand till, followed by shaley limestone bedrock. Based on the screening results, various samples were selected for analysis of benzene, toluene, ethylbenzene and xylenes (BTEX) or volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs F₁-F₄) and polycyclic aromatic hydrocarbons (PAHs). Based on the analytical results, native soil beneath the former tank nest on the northwestern corner of the site, exceeds the Ontario Ministry of the Environment, Conservation and Parks (MOECP) Table 7 Standards for benzene and xylenes.

Groundwater samples collected from BH1, BH2, BH6, BH7, BH8, BH9 and BH10 were analysed for a combination of BTEX, VOCs, PHCs and/or PAHs. A concentration of PHC (F₂) exceeding the MOECP Table 7 standard was identified in BH1 during the September 2011 sampling event. During a subsequent June 2012 sampling event, PHC (F₂) was not detected above the laboratory method detection limit, however benzene was identified in Sample BH1-GW2 at a concentration exceeding the MOECP Table 7 standard.

Concentrations of benzo[g,h,i]perylene, benzo[k]fluoranthene and PHC (F₃) exceeding MOECP Table 7 standards, were identified in a groundwater sample recovered from BH7, within the former waste oil tank nest. A concentration of PHC (F₃) exceeding the MOECP Table 7 standard was identified in the groundwater recovered from BH10, within the footprint of the former automotive service garage bays. Based on the laboratory Certificate of Analysis, this sample result may have been biased high by a non-mineral based compound.

Recommendations

It is recommended that a soil and groundwater remediation program be carried out at the Phase II Property. It is our understanding that the site will be redeveloped with a multi-storey, mixed-used building with two (2) levels of underground parking. The soil and groundwater impacts present on the Phase II Property are not considered to pose an immediate concern to the property as it is currently vacant.

It is recommended that the soil and groundwater remediation program be completed in conjunction with the redevelopment of the subject land. Prior to the remediation program a representative sample of impacted soil will require a leachate analysis in accordance with Ontario Regulation 558, for disposal at an approved waste disposal facility. It is recommended that Paterson personnel be on-site at the time of the remediation program in order to direct the segregation and excavation of impacted soils and to conduct confirmatory sampling as required.

It is also recommended that prior to the remedial activities, an additional attempt be made to locate BH1 and BH7 to confirm the groundwater quality at these locations. In addition to resampling BH1 and BH7, the groundwater from BH10 should be resampled in order to confirm the previous PHC results and to provide delineation of PAH parameters previously identified in BH7 (2015).

1.0 INTRODUCTION

At the request of Financial Eastern Star Group, Paterson Group (Paterson) conducted a Phase II-Environmental Site Assessment (ESA) of the property addressed 1545 Bank Street, in the City of Ottawa, Ontario. The purpose of this Phase II-ESA was to address areas of potential environmental concern identified in previous Phase I ESAs, as well as to supplement and update the findings of previous subsurface investigations which are summarized in this report.

1.1 Site Description

Address: 1545 Bank Street, Ottawa, Ontario.

Legal Description: Part of Lot 6, Concession 1, Gloucester Township,

Ottawa Front. Part of Block O (0.30 Reserve),

Registered Plan M-171.

Property Identification

Number: 04148-0218

Location: The subject site is located at the northeast corner of

the intersection of Bank Street and Evans Boulevard, in the City of Ottawa, Ontario. The subject site is shown on Figure 1 - Key Plan following the body of

this report.

Latitude and Longitude: 45° 22' 50" N, 75° 40' 05" W

Configuration: Irregular

Site Area: 0.22 hectares (approximate)

1.2 Property Ownership

The subject property is currently owned by Financial Eastern Star Group. Paterson was engaged to complete the Phase II-ESA at the subject site by Mr. James Liu with Financial Eastern Star Group. Mr. Liu can be reached by telephone at (613) 731-3815.

1.3 Current and Proposed Future Uses

The subject site is currently vacant. The former commercial building (automotive service garage and offices) is no longer present. It is our understanding that the subject site will be redeveloped as a multi-storey residential building with ground-floor commercial retail and two (2) levels of underground parking.

1.4 Applicable Site Condition Standard

The site condition standards for the property were obtained from Table 7 of the document entitled "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", prepared by the Ontario Ministry of the Environment, Conservation and Parks (MOECP), April 2011. The MOECP Table 7 Standards are based on the following considerations:

	Coarse-grained soil conditions
	Shallow soil conditions
	Non-potable groundwater conditions
П	Residential land use

Results were also compared to the MOECP Table 1 Standards for off-site disposal purposes.

2.0 BACKGROUND INFORMATION

2.1 Physical Setting

The subject site is located at the northeast corner of the intersection of Bank Street and Evans Boulevard, in the City of Ottawa, Ontario. The Phase II Property is located in an urban area surrounded by various sized residential and commercial structures. The site topography mimics the regional topography, which slopes down towards the northwest, towards Sawmill Creek. Site drainage consists a combination of of sheet flow to the catch basins along Bank Street to the west/northwest and surficial infiltration in gravel surfaced areas. The Phase II Property is situated in a municipally serviced area.

2.2 Past Investigations

Paterson has completed a modified Phase I ESA for the subject property in November of 2011, which incorporated an assessment of soil and groundwater conditions at the subject site via boreholes advanced as part of a concurrent geotechnical investigation.

Report: PE4330-2

In November of 2015, Paterson conducted a subsurface investigation to further characterize the soil and groundwater on the subject land.

The historical research identified the property as a retail fuel outlet (and automotive service garage) from the 1950s to 2009. A dry cleaning establishment occupied a portion of the office space from 1987 through 2010/2011. It was understood that the underground storage tanks (USTs) associated with the retail fuel outlet were removed following the closure of the retail fuel outlet in 2009, at which time a remediation program was carried out by Jacques Whitford Stantec Limited (JWSL). Based on a review of the JWSL report, contaminated soil was identified and removed from five (5) separate excavations on the property: in the vicinity of the former underground storage tanks, the former pump island, the former waste oil storage tank and the former underground hydraulic hoists within the garage bays. The remaining soil was subsequently tested and found to be in compliance with applicable MOECP remediation standards. A confirmatory test pit program was also completed and no further areas of contamination were identified.

Based on the findings of the Paterson investigations, impacted soil and groundwater were identified at BH1, within the former tank nest on the northwestern portion of the site. It was recommended that a remediation program be carried out in conjunction with the redevelopment of the land. It was specifically recommended that further investigation be carried out during the removal of the building foundation to assess the subsurface in the vicinity of the garage floor drain and oil-water separator.

Based on the July 2018 Phase I ESA conducted by Paterson for the subject land, historical on- or off-site potentially contaminating activities (PCAs) were considered to result in five (5) areas of potential environmental concern (APECs) on the Phase I and Phase II Property, as presented in Table 1.

Report: PE4330-2

August 27, 2018 Page 3

Table 1 Areas of Potential Environmental Concern								
Area of Potential Environmental Concern	Location of Area of Potential Environmental Concern with respect to Phase I Property	Potentially Contaminating Activity	Location of PCA (on-site or off-site)	Contaminants of Potential Concern	Media Potentially Impacted (Groundwater , Soil, and/or Sediment)			
APEC 1 Resulting from a former on-site dry cleaner	Beneath and around former building	Item 37 - Operation of Dry Cleaning Equipment	On-site	VOCs	Soil and groundwater			
APEC 2 Resulting from a former on-site automotive service garage	Beneath and around northern portion of former building Item 52 – Storage, maintenance, fuelling and repair of equipment, vehicles, and material used to maintain transportation systems		On-site	BTEX, PHCs	Soil and groundwater			
APEC 3 Resulting from a former underground waste oil tank	Northeast corner of property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHCs, PAHs	Soil and groundwater			
APEC 4 Resulting from former on-site pump islands	West side of property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-site	BTEX, PHCs	Soil and groundwater			
APEC 5 Resulting from a former on-site underground fuel tank nest	Northwest corner of property	Item 28 - Gasoline and Associated Products Storage in Fixed Tanks	On-Site	BTEX, PHCs	Soil and groundwater			

3.0 SCOPE OF INVESTIGATION

3.1 Overview of Site Investigation

The current subsurface investigation conducted as a component of this Phase II ESA consisted of two (2) boreholes (BH8 and BH9) at the subject site. Boreholes were drilled through overburden soils and cored into bedrock to depths of approximately 6.4 and 6.1m below ground surface (bgs). Each borehole was instrumented with a groundwater monitoring well.

Previous boreholes placed on the Phase II Property, BH1 through BH5 (2011) and BH6 through BH8 (2015), were completed to depths ranging from 1.9 to 8.1m below grade. Groundwater monitoring wells were previously installed in the overburden at BH1, while bedrock monitoring wells were installed at BH6, BH7 and BH8.

3.2 Media Investigated

During the subsurface investigations, soil samples and groundwater samples were obtained and submitted for laboratory analysis. The rationale for sampling and analyzing these media is based on the Contaminants of Potential Concern identified in the Phase I ESA.

Contaminants of potential concern (CPCs) for soil and groundwater are polycyclic aromatic hydrocarbons (PAHs), benzene, toluene, ethylbenzene, and xylenes (BTEX), petroleum hydrocarbons, fractions 1 through 4 (PHCs F1-F4) and/or volatile organic compounds (VOCs).

3.3 Phase I Conceptual Site Model

Geological and Hydrogeological Setting

Based on drilling programs carried out in 2011 and 2015, the soil profile on the subject site consists of fill underlain by native silty clay with an underlying intermittent glacial till layer. Bedrock at the subject site was identified as an interbedded limestone and shale. Overburden at the subject site was found to range between approximately 1.80 to 3.20 m. Groundwater levels obtained from the subject site suggested that groundwater flow is in a southeasterly direction.

Contaminants of Potential Concern

The CPCs identified in the Phase I ESA are listed above in Section 3.2 of this report.

Report: PE4330-2

Existing Buildings and Structures

No buildings or structures exist on the subject property.

Water Bodies

No water bodies are located within the 250m study area. The nearest major water body is the Rideau River, located over 1 km to the north.

Areas of Natural Significance

There are no areas of natural significance within the 250 m study area.

Drinking Water Wells

Based on the level of development and the presence of municipal water services in the area, no drinking water wells are expected to be currently used in the Phase I Study Area.

Neighbouring Land Use

Neighbouring land use in the Phase I Study Area consists of commercial and residential properties. No potentially contaminating activities (PCAs) with the potential to generate areas of potential environmental concern (APECs) were identified within the Phase I Study Area. All of the PCAs identified within the Phase I Study Area are illustrated on Drawing PE4330-2 - Surrounding Land Use Plan, appended to the Phase I ESA report.

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As per Table 1 in Section 2.2 of this report, PCAs identified on the subject site include a former retail fuel outlet (consisting of an underground fuel tank nest and pump islands), an automotive service garage, an underground waste oil tank and a dry cleaning facility.

Assessment of Uncertainty and/or Absence of Information

The presence of potentially contaminating activities was confirmed by a variety of independent sources, including, in some cases, previous analytical test results, which would exceed the currently applicable criteria. As such, the conclusions of this report are not affected by uncertainty which may be present with respect to the individual sources.

Page 6

3.4 Deviations from Sampling and Analysis Plan

The Sampling and Analysis Plan for this project is included in Appendix 1 of this report. Insufficient groundwater was available in the monitoring well at BH6. The groundwater sample recovered was analysed for only PCH F_1 and not the entire PHC (F_1 - F_4) parameter group. There were no other deviations from the Sampling and Analysis Plan.

3.5 Impediments

The borehole locations were constrained by the presence of underground services at the Phase II Property. No other physical impediments or denial of access were encountered during the Phase II ESA.

4.0 INVESTIGATION METHOD

4.1 Subsurface Investigation

The original subsurface investigations were conducted on September 2, 2011 and November 20, 2015, and consisted of the placement of eight (8) boreholes on the Phase II Property. The current subsurface investigation was conducted on July 26, 2018 and consisted of the placement of two (2) boreholes on the Phase II Property. Boreholes BH1 through BH5 (2011) were completed on practical bedrock refusal at depths ranging from approximately 1.9 to 3.2mbgs. Borehole BH1 was completed with a groundwater monitoring well installation. Boreholes BH6 through BH10 (2015, 2018) were cored into the bedrock to depths ranging from approximately 5.1 to 8.1mbgs, and were completed with groundwater monitoring well installations to access the groundwater table.

The boreholes were placed to address the aforementioned areas of potential environmental concern (APECs) and to provide coverage of the site from a geotechnical perspective. The boreholes were drilled with a truck mounted CME 55 power auger drill rig. The truck mounted drill rig was provided by George Downing Estate Drilling of Hawkesbury, Ontario. Borehole locations are shown on Drawing PE4330-3 – Test Hole Location Plan, appended to this report.

4.2 Soil Sampling

A total of 37 soil samples were obtained from the boreholes by means of split spoon sampling and the sampling of shallow soils directly from auger flights. Split spoon samples were taken at approximate 0.76 to 1.52 m intervals. The depths at which split spoon and auger flight samples were obtained from the boreholes and test pits are shown as "SS" and "AU" respectively on the Soil Profile and Test Data Sheets, appended to this report.

Upon refusal of the augers, some of the boreholes were advanced into bedrock using a diamond coring system. Rock core samples were recovered and are shown as "**RC**" on the Soil Profile and Test Data Sheets.

The soil stratigraphy generally consists of asphaltic concrete or concrete over fill material or fill material from ground surface. The fill material primarily consists of brown silty sand with gravel. Crushed stone over a layer of silty sand fill, was identified at BH8. The fill material extends to depths ranging from approximately 0.4 to 2.1mbgs.

Native silty clay and or glacial till was identified beneath the fill material at all borehole locations with the exception of BH8, extending to depths of approximately 1.8 to 3.2mbgs. The native soils were underlain by shaley limestone bedrock. Fill material extended from ground surface to bedrock at BH8, placed within the former pump island excavation.

4.3 Field Screening Measurements

All soil samples collected were submitted to a preliminary screening procedure, which included visual screening for colour and evidence of metals, as well as screening with an RKI Eagle combustible gas detector and/or a MiniRae photoionization detector (PID). The detection limit of the RKI Eagle is 5 ppm, with a precision of \pm -5 ppm. The detection limit of the PID is 0.1 ppm, with a precision of \pm -0.1 ppm

The soil vapours were measured by inserting the analyzer probe into the nominal headspace above the soil sample. Samples were then agitated and the peak readings recorded. The RKI Eagle combustible vapour readings and PID vapour readings were found to range from 5 to 25ppm, with the exception of 50ppm readings for Samples BH7-SS3 and BH6-AU1.

These readings are not considered to be indicative of the presence of volatile substances (such as gasoline). The vapour results cannot be used to identify the presence of heavier petroleum hydrocarbons such as heavy oil. Please refer to the Soil Profile and Test Data Sheets in Appendix 1 for soil sample headspace results.

Soil samples were selected for analysis based on visual appearance, location, and vapour readings.

4.4 Groundwater Monitoring Well Installation

Six (6) groundwater monitoring wells were installed on the Phase II Property by George Downing Estate Drilling of Hawkesbury, Ontario, under the full-time supervision by Paterson personnel, during the interim of 2011 through 2018. The monitoring wells consisted of 32mm or 50mm diameter Schedule 40 threaded PVC risers and screens. A sand pack consisting of silica sand was placed around the screen, and a bentonite seal was placed above the screen to minimize cross-contamination. Monitoring well construction details are provided on the Soil Profile and Test Data Sheets in Appendix 1. A summary of monitoring well construction details is provided below in Table 2.

It should be noted that only the monitoring wells installed in BH6, BH9 and BH10 remain present on the Phase II Property.

Table 2 Monitoring Well Construction Details									
Well ID	Ground Surface Elevation	Total Depth (m BGS)	Screened Interval (m BGS)	Sand Pack (m BGS)	Bentonite Seal (m BGS)	Casing Type			
BH1 ¹	86.75	3.18	1.68-3.18	1.20-3.18	0.3-1.20	Flushmount			
BH6	87.28	8.08	5.08-8.08	5.38-8.08	0.3-5.38	Flushmount			
BH7 ¹	87.58	5.05	3.55-5.05	3.20-3.55	0.3-3.20	Flushmount			
BH8 ¹	86.93	5.23	3.73-5.23	3.40-5.23	0.3-3.40	Flushmount			
BH9	87.68	6.38	3.38-6.38	3.00-6.38	0.3-3.00	Flushmount			
BH10	87.58	6.10	3.10-6.10	2.80-6.10	0.3-2.80	Flushmount			
Notes: 1 – monitoring wells damaged or no longer present on the Phase II Property									

Report: PE4330-2

August 27, 2018 Page 9

4.5 Field Measurement of Water Quality Parameters

Prior to the August 2018 groundwater sampling event, water quality parameters were measured in the field using a multi-parameter analyzer. Parameters measured in the field include temperature, electrical conductivity and pH. Monitoring wells were purged prior to sampling until at least three well volumes had been removed or until the well was purged dry. Field parameter values prior to sampling are summarized below in Table 3.

Table 3 Field Measurement of Water Quality Parameters								
Borehole Location	Temperature (°C)	Conductivity (µS/cm)	Date					
BH6	17.1	8.71	58	August 2, 2018				
BH9	16.4	7.34	103	August 2, 2018				
BH10	16.5	7.49	134	August 2, 2018				

4.6 Groundwater Sampling

Groundwater sampling protocols were followed using the MOECP document entitled "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", dated May 1996. Groundwater samples were obtained from each monitoring well, using dedicated sampling equipment. Standing water was purged from each well prior to sampling. Samples were stored in coolers to reduce analyte volatilization during transportation. Details of our standard operating procedure for groundwater sampling are provided in the Sampling and Analysis Plan in Appendix 1.

4.7 Analytical Testing

Based on the guidelines outlined in the Sampling and Analysis Plan appended to this report, the following groundwater and soil samples were submitted for analysis:

wa Kingston North Bay 1545 Bank

Table 4									
Soil Samples Submitted for Analytical Testing									
		Para	ameters	Analy	zed				
Sample ID	Sample Depth/ Stratigraphic Unit	VOCs	VOCs PHC (F ₁ -F ₄) / BTEX PAH PAH		Ħ	Rationale			
September 2	22, 2011								
BH1-SS5	3.0-3.18mbgs; Native Glacial Till		х			To assess potential for residual PHCs within former UST excavation; based on highest combustible vapour reading.			
BH5-SS2	0.76-1.37mbgs; Native Silty Clay		х			To assess potential for residual PHCs within former pump island excavation; based on olfactory observations.			
November 2	3, 2015								
BH6-SS3	1.52-2.13mbgs; Native Silty Clay	Х	х			To assess potential impacts from former dry cleaner; based on organic vapour reading closest to inferred water table.			
BH7-SS4	2.29-2.49mbgs; Native Silty Clay		х	Х		To assess potential impacts resulting from former waste oil storage; based on highest organic vapour reading.			
BH8-SS4	2.28-2.67mbgs; Fill material		х			To assess potential for residual PHCs within former pump island excavation; based on location with respect to inferred water table.			
July 26, 201	8								
BH9-SS2	1.52-2.13 mbgs; Native Silty Clay	Х	Х		Х	To assess potential for impacts resulting from the former dry cleaner; based on sample depth.			
BH10-SS2	1.52-2.13 mbgs; Native Silty Clay	Х	Х		Х	To assess potential for impacts beneath the automotive service garage; based on sample depth.			

Table 5										
Groundwater Samples Submitted for Analytical Testing										
	Sample Depth/		aramete Analyzed		Rationale					
Sample ID	Stratigraphic Unit	VOCs	PHC (F ₁ -F ₄)	PAH	nationale					
September 3	30, 2011	ı								
BH1-GW1	1.68-3.18mbgs; Fill	Х	Х		To assess groundwater quality within former tank nest.					
November 1	, 2011	ı	I I		I –					
BH2-GW1 ¹	1.47-2.97mbgs; Native Glacial Till/Fill	х			To assess groundwater quality within former pump island and to assess potential groundwater impacts resulting from former dry cleaner.					
June 25, 201	12									
BH1-GW2	1.68-3.18mbgs; Fill	Х	Х		To confirm groundwater quality within former tank nest.					
November 2	7, 2015									
BH6-GW1	5.08-8.08mbgs; Bedrock	Х	X ²		To assess potential groundwater impacts from the former on-site dry cleaner and retail fuel outlet.					
BH7-GW1	3.55-5.05mbgs; Bedrock	Х	х	Х	To assess the groundwater in the vicinity of the former waste oil storage tank.					
BH8-GW1	3.73-5.23mgbs; Bedrock	х	х		To assess potential groundwater impacts in the vicinity of the former pump island.					
DUP ³	5.08-8.08mbgs; Bedrock	Х	X ²		Quality Assurance/Quality Control					
August 2, 20	018									
BH6-GW2 ⁴	5.08-8.08mbgs; Bedrock	Х			To reassess the quality of the groundwater at this location.					
BH9-GW1	3.38-6.38mbgs; Bedrock	Х	Х		To assess the groundwater quality beneath the former automotive service garage bays.					
BH10-GW1	3.10-6.10mbgs; Bedrock	Х	Х	X	To assess the groundwater quality beneath the former dry cleaner.					
DUP ⁵	3.38-6.38mbgs; Bedrock	Х			Quality Assurance/Quality Control					
Notes:		_								

Notes:

- 1 sample retrieved from a piezometer installed for Geotechnical purposes 2 sample analysed for PHC F₁ parameter only 3 Duplicate of Sample BH6-GW1

- 4 Sample labelled as BH6-GW1 on laboratory Certificate of Analysis 5 Duplicate of Sample BH9-GW1

Paracel Laboratories (Paracel), of Ottawa, Ontario, performed the laboratory analysis on the samples submitted for analytical testing. Paracel is a member of the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA). Paracel is accredited and certified by SCC/CALA for specific tests registered with the association.

4.8 Residue Management

Soil cuttings, purge water and fluids from equipment cleaning were retained onsite.

4.9 Elevation Surveying

Monitoring well and borehole locations were surveyed using a laser level. Elevations were surveyed relative to the top spindle of the fire hydrant located near the northwest corner of the Phase II Property. The geodetic elevation of the benchmark is 87.426 meters above sea level (m ASL), as provided by Farley, Smith and Denis Surveying Ltd. The location of the site benchmark is shown on Drawing PE4330-3 – Test Hole Location Plan.

4.10 Quality Assurance and Quality Control Measures

A summary of quality assurance and quality control (QA/QC) measures, including sampling containers, preservation, labelling, handling, chain of custody, equipment cleaning procedures, and field quality control measurements are provided in the Sampling and Analysis Plan in Appendix 1.

5.0 REVIEW AND EVALUATION

5.1 Geology

Site geology details are provided in the Soil Profile and Test Data Sheets provided in Appendix 1. The site stratigraphy generally consists of a layer of asphaltic concrete, concrete and/or fill material (crushed stone or silty sand and gravel) from ground surface over native silty clay and/or glacial till. Shaley limestone bedrock was encountered at depths ranging from approximately 1.8 to 3.2m below grade.

Groundwater was encountered near the overburden/bedrock interface, or deeper within the bedrock, at depths ranging from approximately 1.8 to 4.6m below the existing grade.

5.2 Groundwater Elevations, Flow Direction, and Hydraulic Gradient

Groundwater levels were measured using an electronic water level meter. Groundwater levels are summarized below in Table 6. All elevations are relative to the top spindle of the fire hydrant located near the northwest corner of the Phase II Property. It should be noted that groundwater levels are expected to fluctuate throughout the year with seasonal variations.

Table 6 Groundwater Level Measurements									
Borehole Location	Ground Surface Elevation (m ASL)	Water Level Depth (m below grade)	Water Level Elevation (m ASL)	Date of Measurement					
BH1	86.75	1.46	85.29	September 30, 2011					
BH2 ¹	86.95	2.11	84.84						
BH6	87.28	1.99	85.29	November 27, 2015					
BH7	87.58	2.19	85.39						
BH8	86.93	1.19	85.74						
BH6	87.28	4.60	82.68	August 2, 2018					
BH9	87.68	1.84	85.84						
BH10	87.58	1.93	85.65						

Based on the groundwater elevations from the August 2018 monitoring event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4330-4 - Groundwater Contour Plan. Based on the contour mapping, groundwater flow at the subject site appears to be towards the southwest. A horizontal hydraulic gradient of approximately 0.12m/m was calculated.

5.3 Fine-Medium Soil Texture

Based on observed soil conditions, it is our opinion that fine- to medium-grained soil standards are not applicable at the subject site.

5.4 Soil: Field Screening

Field screening of the soil samples collected during drilling resulted in soil vapour readings ranging from 5ppm to 50ppm. Field screening results of each individual soil sample are provided on the Soil Profile and Test Data Sheets appended to this report.

5.5 Soil Quality

During the interim of 2011 through 2018, a total of seven (7) soil samples were submitted to Paracel Laboratories for analysis of VOC, BTEX, PHC (F_1 - F_4) and/or PAH parameters. The results of the analytical testing are presented in Tables 7, 8 and 9. The laboratory certificates of analysis are provided in Appendix 1.

Table 7
Analytical Test Results – Soil (2011)
BTEX and PHCs (F₁-F₄)

		Soil Sampl September		MOECP Table 7	MOECP Table	
Parameter	MDL (μg/g)	BH1-SS5	BH1-SS5 BH5-SS2		1 Standards Background (μg/g)	
Benzene	0.02	<u>0.25</u>	nd	0.21	0.02	
Ethylbenzene	0.05	<u>1.15</u>	nd	2	0.05	
Toluene	0.05	<u>1.13</u>	nd	2.3	0.2	
Xylenes	0.05	<u>7.48</u>	nd	3.1	0.05	
PHC F ₁	10	<u>30</u>	nd	55	25	
PHC F ₂	10	<u>20</u>	nd	98	10	
PHC F ₃ 10		nd	nd	300	240	
PHC F ₄	10	nd	nd	2,800	120	

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- ☐ Bold and underlined Value exceeds MOECP Table 3 Standard (coarse-grained)
- □ <u>Underlined</u> Value exceeds MOECP Table 1 Standard

BTEX parameters exceeding the MOECP Table 7 coarse-grained, fine-grained and/or MOECP Table 1 standards were identified in soil Sample BH1-SS5. The PHC (F₁-F₂) parameters identified in soil Sample BH1-SS5 were in compliance with the MOECP Table 7 standards, although they exceed the Table 1 standards. No BTEX or PHC parameters were identified in soil Sample BH5-SS2, above the laboratory method detection limits.

Table 7 Continued Analytical Test Results - Soil (2015) BTEX and PHCs (F₁-F₄)

			Soil Samples (µ November 20, 2	MOECP Table	MOECP Table 1		
Parameter	MDL (μg/g)	BH6-SS3 ¹	BH7-SS4	BH8-SS4	7 Standards Residential Coarse (µg/g)	Standards Background (µg/g)	
Benzene	0.02	nd	nd	nd	0.21	0.02	
Ethylbenzene	0.05	nd	nd	nd	2	0.05	
Toluene	0.05	nd	nd	nd	2.3	0.2	
Xylenes	0.05	nd	<u>0.23</u>	nd	3.1	0.05	
PHC F ₁	7	nd	9	nd	55	25	
PHC F ₂	4	nd	nd	nd	98	10	
PHC F₃	8	nd	147	nd	300	240	
PHC F ₄	6	nd	119	nd	2,800	120	

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- ☐ Bold and underlined Value exceeds MOECP Table 3 Standard (coarse-grained)
- ☐ <u>Underlined</u> Value exceeds MOECP Table 1 Standard
- □ 1 BTEX analysed as part of VOC parameters group

Xylenes, PHC F₃ and F₄ were identified in soil Sample BH7-SS4 at concentrations below the MOECC Table 7. The xylene concentration in this sample also exceeds the MOECP Table 1 standard. BTEX and PHC parameters were not identified above the laboratory method detection limits in the remaining samples analysed.

1545 Bank Street, Ottawa, Ontario

Table 7 Continued Analytical Test Results – Soil (2018) BTEX and PHCs (F₁-F₄)

D	MDL	Soil Samples (µg/g) July 26, 2018		MOECP Table 7 Standards	MOECP Table 1 Standards	
Parameter	(µg/g)	BH9-SS2 ¹	BH10-SS2 ¹	Residential Coarse (μg/g)	Background (μg/g)	
Benzene	0.02	nd	nd	0.21	0.02	
Ethylbenzene	0.05	nd	nd	2	0.05	
Toluene	0.05	nd	nd	2.3	0.2	
Xylenes	0.05	nd	nd	3.1	0.05	
PHC F ₁	7	nd	nd	55	25	
PHC F ₂	4	nd	nd	98	10	
PHC F ₃	8	nd	nd	300	240	
PHC F ₄	6	nd	nd	2,800	120	

Notes:

■ MDL – Method Detection Limit

□ nd – not detected above the MDL

□ 1 – BTEX analysed as part of VOC parameter group

No BTEX or PHC parameters were detected in the soil analysed during the 2018 subsurface investigation. The results are in compliance with the MOECP Table 7 and Table 1 standards.

Table 8 Analytical Test Results – Soil (2015) Volatile Organic Compounds

		Soil S	MOECP	MOECP			
Parameter	MDL	Nov.20, 2015	6, 2018	Table 7 2018 Residential			
	(µg/g)	BH6-SS3	BH9-SS2	BH10-SS2	Coarse (µg/g)	Residential (µg/g)	
Acetone	0.5	nd	nd	nd	16	0.5	
Benzene	0.02	nd	nd	nd	0.21	0.02	
Bromodichloromethane	0.05	nd	nd	nd	13	0.05	
Bromoform	0.05	nd	nd	nd	0.27	0.05	
Bromomethane	0.05	nd	nd	nd	0.05	0.05	
Carbon Tetrachloride	0.05	nd	nd	nd	0.05	0.05	
Chlorobenzene	0.05	nd	nd	nd	2.4	0.05	
Chloroform	0.05	nd	nd	nd	0.05	0.05	
Dibromochloromethane	0.05	nd	nd	nd	9.4	0.05	
1,2-Dichlorobenzene	0.05	nd	nd	nd	3.4	0.05	
1,3-Dichlorobenzene	0.05	nd	nd	nd	4.8	0.05	
1,4-Dichlorobenzene	0.05	nd	nd	nd	0.083	0.05	
Dichlorodifluoromethane	0.05	nd	nd	nd	16	0.05	
1,1-Dichloroethane	0.05	nd	nd	nd	3.5	0.05	
1,2-Dichloroethane	0.05	nd	nd	nd	0.05	0.05	
1,1-Dichloroethylene	0.05	nd	nd	nd	0.05	0.05	
cis-1,2-Dichloroethylene	0.05	nd	nd	nd	3.4	0.05	
trans-1,2-Dichloroethylene	0.05	nd	nd	nd	0.084	0.05	
1,2-Dichloropropane	0.05	nd	nd	nd	0.05	0.05	
1,3-Dichloropropylene, total	0.05	nd	nd	nd	0.05	0.05	
1,2-Dibromoethane	0.05	nd	nd	nd	0.05	0.05	
Ethylbenzene	0.05	nd	nd	nd	2	0.05	
Hexane	0.05	nd	nd	nd	2.8	0.05	
Methyl Ethyl Ketone	0.5	nd	nd	nd	16	0.5	
Methyl Isobutyl Ketone	0.5	nd	nd	nd	1.7	0.5	
Methyl tert-butyl ether	0.05	nd	nd	nd	0.75	0.05	
Methylene Chloride	0.05	nd	nd	nd	0.1	0.05	
Styrene	0.05	nd	nd	nd	0.7	0.05	
1,1,1,2-Tetrachloroethane	0.05	nd	nd	nd	0.058	0.05	
1,1,2,2-Tetrachloroethane	0.05	nd	nd	nd	0.05	0.05	
Tetrachloroethylene	0.05	nd	nd	nd	0.28	0.05	
Toluene	0.05	nd	nd	nd	2.3	0.2	
1,1,1-Trichloroethane	0.05	nd	nd	nd	0.38	0.05	
1,1,2-Trichloroethane	0.05	nd	nd	nd	0.05	0.05	
Trichloroethylene	0.05	nd	nd	nd	0.061	0.05	
Trichlorofluoromethane	0.05	nd	nd	nd	4	0.25	
Vinyl Chloride	0.02	nd	nd	nd	0.02	0.02	
Xylenes, total	0.05	nd	nd	nd	3.1	0.05	
Notes:	1						

Notes:

☐ MDL – Method Detection Limit

□ nd – not detected above the MDL

No VOC parameters were detected in the samples analysed. All VOC parameters are in compliance with the MOECP Table 1 and 7 Standards.

Table 9				
Analytical Test Res	sults – S	Soil (2015)		
PAHs	T			T
	MDL	Soil Sample (µg/g)	MOECP Table 7	MOECP Table 1
Parameter	(µg/g)	November 20, 2015	Residential Coarse	Residential
	(1-9-9)	BH7-SS4	(μg/g)	(µg/g)
Acenaphthene	0.02	0.04	7.9	0.072
Acenaphthylene	0.02	nd	0.15	0.093
Anthracene	0.02	0.04	0.67	0.16
Benzo[a]anthracene	0.02	0.24	0.5	0.36
Benzo[a]pyrene	0.02	0.25	0.3	0.3
Benzo[b]fluoranthene	0.02	0.36	0.78	0.47
Benzo[g,h,i]perylene	0.02	0.19	6.6	0.68
Benzo[k]fluoranthene	0.02	0.29	0.78	0.48
Chrysene	0.02	0.29	7	2.8
Dibenzo[a,h]anthracene	0.02	0.04	0.1	0.1
Fluoranthene	0.02	0.54	0.69	0.56
Fluorene	0.02	0.04	62	0.12
Indeno[1,2,3-cd]pyrene	0.02	0.17	0.38	0.23
Methylnaphthalene (1&2)	0.04	nd	0.99	0.59
Naphthalene	0.01	0.02	0.6	0.09
Phenanthrene	0.02	0.30	6.2	0.69
Pyrene	0.02	0.48	78	1

Notes:

All PAH parameters detected in soil Sample BH7-SS4 are in compliance with the MOECP Table 1 and 7 Standards.

Soil Samples BH9-SS2 and BH10-SS2 (2018) were analysed for pH. The results of the analytical testing indicated values of 7.49 and 7.69.

Maximum soil concentrations are summarized in Table 10 below.

[■] MDL – Method Detection Limit

[☐] nd – not detected above the MDL

Parameter	Maximum Concentration (µg/g)	Borehole	Depth Interval (mbgs)	
Benzene	<u>0.25</u>	BH1-SS5	3-3.18	
Ethylbenzene	<u>1.15</u>			
Toluene	<u>1.13</u>			
Xylenes	<u>7.48</u>			
PHC F1	<u>30</u>			
PHC F2	<u>20</u>			
PHC F3	147	BH7-SS4	2.29-2.49	
PHC F4	119			
Acenaphthene	0.04	BH7-SS4	2.29-2.49	
Anthracene	0.04			
Benzo[a]anthracene	0.24			
Benzo[a]pyrene	0.25			
Benzo[b]fluoranthene	0.36			
Benzo[g,h,i]perylene	0.19			
Benzo[k]fluoranthene	0.29			
Chrysene	0.29			
Dibenzo[a,h]anthracene	0.04			
Fluoranthene	0.54			
Fluorene	0.04			
Indeno[1,2,3-cd]pyrene	0.17			
Naphthalene	0.02			
Phenanthrene	0.30			
Pyrene	0.48			

All other parameter concentrations were below laboratory detection limits.

5.6 Groundwater Quality

Groundwater samples from the monitoring wells installed in BH1, BH6, BH7, BH8, BH9 and BH10, and a groundwater sample collected from a Geotechnical piezometer installed in BH2, were submitted for laboratory analysis of VOC, BTEX, PHC (F1-F4) and PAH. The groundwater samples were obtained from the screened intervals noted on Table 2, above. The results of the analytical testing are presented below in Tables 11, 12 and 13. The laboratory certificates of analysis are provided in Appendix 1.

Table 11
Analytical Test Results – Groundwater
BTEX and PHCs (F₁-F₄) (2011/2012)

Parameter	MDL	Grou	MOECP Table 7		
	(µg/L)	Sept.30, 2011	Nov.1, 2011	June 25, 2012	Standards (μg/L)
		BH1-GW1	BH2-GW1 ¹	BH1-GW2	(µg, =)
Benzene	0.5	nd	nd	<u>5.2</u>	0.5
Ethylbenzene	0.5	nd	nd	4.1	54
Toluene	0.5	nd	10.4	nd	320
Xylenes	0.5	28.1	nd	5.7	72
PHC F ₁	25	401	nt	117	420
PHC F ₂	100	<u>435</u>	nt	nd	150
PHC F₃	100	nd	nt	nd	500
PHC F ₄	100	nd	nt	nd	500

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- ☐ Bold Value exceeds MOECP Table 7 Standards
- ☐ 1 PHC F₂-F₄ parameters were not tested due to a limited amount of groundwater available

Toluene and xylene concentrations were identified in the groundwater recovered from BH1 and BH2 during the 2011 sampling event. The concentrations were in compliance with the MOECP Table 7 standards. Concentrations of PHC F_1 and F_2 were identified in the sample recovered from BH1. While the F_1 concentration was in compliance with the MOECP Table 7 standard, the F_2 concentration was in excess of the Table 7 standard. The groundwater recovered from BH2 (2011) was not analysed for PHC parameters due to insufficient groundwater.

Concentrations of BTEX and PHC F₁ were identified in the second groundwater sample recovered from BH1 in 2012. The benzene concentration exceeded the MOECP Table 7 standard while remaining BTEX parameters identified were in compliance. The PHC F₁ parameter identified was in compliance with the MOECP Table 7 standard. No other PHC parameters were detected above the method detection limit.

Table 11 Continued

Analytical Test Results – Groundwater

BTEX and PHCs (F₁-F₄) (2015)

Parameter	MDL (μg/L)	G	MOECP Table 7 Standards			
		BH6-GW1 ¹	BH7-GW1	BH8-GW1	DUP ¹	(μg/L)
Benzene	0.5	nd	nd	nd	nd	0.5
Ethylbenzene	0.5	nd	nd	nd	nd	54
Toluene	0.5	1.4	nd	nd	1.0	320
Xylenes	0.5	1.3	nd	nd	0.9	72
PHC F ₁	25	nd	nd	nd	nd	420
PHC F ₂	100	nt	nd	nd	nt	150
PHC F₃	100	nt	<u>690</u>	nd	nt	500
PHC F ₄	100	nt	nd	nd	nt	500

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- ☐ **Bold** Value exceeds MOECP Table 7 Standards
- □ 1 PHC F₂-F₄ parameters were not tested due to a limited amount of groundwater available

Toluene and xylene concentrations in compliance with the MOECP Table 7 standards were identified in groundwater samples recovered from BH6 and its duplicate. Otherwise, no BTEX concentrations were detected above the laboratory method detection limits in the groundwater samples analysed.

Petroleum hydrocarbon fraction F_3 was detected at a concentration exceeding the MOECP Table 7 standard in groundwater Sample BH7-GW1. No other PHC parameters were identified in the groundwater samples. As noted above, the groundwater sample from BH6 and the duplicate sample were not analysed for PHC F_2 - F_4 due to an insufficient volume of groundwater available.

Table 11 Continued Analytical Test Results – Groundwater BTEX and PHCs (F₁-F₄) (2018)

Parameter	MDL (μg/L)	G	MOECP Table 7 Standards			
		BH6-GW2 ¹	BH9-GW1	BH10-GW1	DUP	(μg/L)
Benzene	0.5	nd	nd	nd	nd	0.5
Ethylbenzene	0.5	nd	nd	nd	nd	54
Toluene	0.5	nd	nd	nd	nd	320
Xylenes	0.5	nd	nd	nd	nd	72
PHC F ₁	25	nt	nd	nd	nt	420
PHC F ₂	100	nt	nd	nd	nt	150
PHC F₃	100	nt	nd	4,4902	nt	500
PHC F ₄	100	nt	nd	471	nt	500

Notes:

- MDL Method Detection Limit
- □ nd not detected above the MDL
- □ nt not tested for this parameters
- ☐ Bold Value exceeds MOECP Table 7 Standards
- \Box 1 Second sample recovered from BH6, although sample identified as BH6-GW1.
- 2 Laboratory qualifier states: Some peak(s) in the GC-FID Chromatogram are not typical of petroleum hydrocarbon distillates. May be the result of high concentrations of non-mineral based compounds not completely removed by the method cleanup. Results may be biased high.

No BTEX parameters were identified above the laboratory method detection limit in any of the groundwater samples submitted for analytical testing. A PHC F_3 fraction exceeding the MOECP Table 7 standard was identified in groundwater Sample BH10-GW1. No other PHC concentrations were detected in the groundwater samples.

As noted above, the laboratory Certificate of Analysis indicated that the F₃ concentration may be a biased result. This monitoring well should be resampled to confirm the PHC concentrations.

Table 12 Continued Analytical Test Results – Groundwater Volatile Organic Compounds (2011/2012)

	MDI	MOECP Table 7				
Parameter	MDL (µg/L)	BH1-GW1 BH2-GW1		BH1-GW2	Standards	
	(P9 [,] -)	Sept. 30, 2011	Nov. 1, 2011	June 25, 2012	(µg/L)	
Acetone	5.0	nd	47.0	nd	100,000	
Benzene	0.5	nd	nd	5.2	0.5	
Bromodichloromethane	0.5	nd	nd	nd	67,000	
Bromoform	0.5	nd	nd	nd	5	
Bromomethane	0.5	nd	nd	nd	0.89	
Carbon Tetrachloride	0.2	nd	nd	nd	0.2	
Chlorobenzene	0.5	nd	nd	nd	140	
Chloroform	0.5	nd	nd	nd	2	
Dibromochloromethane	0.5	nd	nd	nd	65,000	
Dichlorodifluoromethane	1.0	nd	nd	nd	3,500	
1,2-Dichlorobenzene	0.5	nd	nd	nd	150	
1,3-Dichlorobenzene	0.5	nd	nd	nd	7,600	
1,4-Dichlorobenzene	0.5	nd	nd	nd	0.5	
1,1-Dichloroethane	0.5	nd	nd	nd	11	
1,2-Dichloroethane	0.5	nd	nd	nd	0.5	
1,1-Dichloroethylene	0.5	nd	nd	nd	0.5	
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	1.6	
trans-1,2- Dichloroethylene	0.5	nd	nd	nd	1.6	
1,2-Dichloropropane	0.5	nd	nd	nd	0.58	
1,3-Dichloropropene	0.5	nd	nd	nd	0.5	
1,2-Dibromoethane	0.2	nd	nd	nd	0.2	
Ethylbenzene	0.5	nd	nd	4.1	54	
Hexane	1.0	nd	nd	nd	5	
Methyl Ethyl Ketone	5.0	nd	113	nd	21,000	
Methyl Isobutyl Ketone	5.0	nd	nd	nd	5,200	
Methyl tert-butyl Ether	2.0	nd	nd	nd	15	
Methylene Chloride	5.0	nd	nd	nd	26	
Styrene	0.5	nd	nd	nd	43	
1,1,1,2- Tetrachloroethane	0.5	nd	nd	nd	1.1	
1,1,2,2- Tetrachloroethane	0.5	nd	nd	nd	0.5	
Tetrachloroethylene	0.5	nd	nd	nd	0.5	
Toluene	0.5	nd	10.4	nd	320	
1,2,4-Trichlorobenzene	0.5	nd	nd	nd	3	
1,1,1-Trichloroethane	0.5	nd	nd	nd	23	
1,1,2-Trichloroethane	0.5	nd	nd	nd	0.5	
Trichloroethylene	0.5	nd	nd	nd	0.5	
Trichlorofluoromethane	1.0	nd	nd	nd	2,000	
Vinyl Chloride	0.5	nd	nd	nd	0.5	
Xylenes	0.5	28.1	nd	5.7	72	

Notes:

☐ MDL – Method Detection Limit; nd – not detected above the MDL

☐ Bold – concentration exceeds MOECP Table 7 standard

With one exception, the VOC concentrations detected in each sample were in compliance with MOECP Table 7 standards.

The benzene concentration (5.2 µg/L) detected in groundwater Sample BH1-GW1 which exceeds the MOECP Table 7 standard of 0.5µg/L.

Table 12 Continued
Analytical Test Results – Groundwater
Volatile Organic Compounds (2015)

Parameter	MDL		MOECP Table 7			
Turumeter	(µg/L)	BH6-GW1	BH7-GW1	BH8-GW1	DUP	Standards (µg/L)
Acetone	5.0	nd	nd	nd	nd	100,000
Benzene	0.5	nd	nd	nd	nd	0.5
Bromodichloromethane	0.5	0.9	nd	nd	0.9	67,000
Bromoform	0.5	nd	nd	nd	nd	5
Bromomethane	0.5	nd	nd	nd	nd	0.89
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.2
Chlorobenzene	0.5	nd	nd	nd	nd	140
Chloroform	0.5	<u>11.8</u>	nd	1.6	<u>11.8</u>	2
Dibromochloromethane	0.5	nd	nd	nd	nd	65,000
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	3,500
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	150
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	7,600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	0.5
1,1-Dichloroethane	0.5	nd	nd	nd	nd	11
1,2-Dichloroethane	0.5	nd	nd	nd	nd	0.5
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	0.5
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6
trans-1,2- Dichloroethylene	0.5	nd	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	nd	0.58
1,3-Dichloropropene	0.5	nd	nd	nd	nd	0.5
1,2-Dibromoethane	0.2	nd	nd	nd	nd	0.2
Ethylbenzene	0.5	nd	nd	nd	nd	54
Hexane	1.0	nd	nd	nd	nd	5
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	21,000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	5,200
Methyl tert-butyl Ether	2.0	nd	nd	nd	nd	15
Methylene Chloride	5.0	nd	nd	nd	nd	26
Styrene	0.5	nd	nd	nd	nd	43
1,1,1,2- Tetrachloroethane	0.5	nd	nd	nd	nd	1.1
1,1,2,2- Tetrachloroethane	0.5	nd	nd	nd	nd	0.5
Tetrachloroethylene	0.5	nd	nd	nd	nd	0.5
Toluene	0.5	1.4	nd	nd	1.0	320
1,2,4-Trichlorobenzene	0.5	nd	nd	nd	nd	3
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	23
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	0.5
Trichloroethylene	0.5	nd	nd	nd	nd	0.5
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2,000
Vinyl Chloride	0.5	nd	nd	nd	nd	0.5
Xylenes	0.5	1.3	nd	nd	0.9	72

Notes:

MDL – Method Detection Limit; nd – not detected above the MDL **Bold** – concentration exceeds MOECP Table 7 standard

No VOC parameters were identified above the laboratory detection limits in groundwater Sample BH7-GW1. The VOC parameters detected in the remaining samples analysed were in compliance with the MOECP Table 7 standards, with the exception of the chloroform concentrations identified in Sample BH6-GW1 and its duplicate. The chloroform is considered to have resulted from the use of chlorinated municipal water for bedrock coring and is expected to have dissipated by this time.

Table 12 Continued

Analytical Test Results – Groundwater Volatile Organic Compounds (2018)

Parameter	MDL		MOECP Table 7			
. a.ao.o.	(µg/L)	BH6-GW2	BH9-GW1	BH10-GW1	DUP	Standards (µg/L)
Acetone	5.0	nd	nd	nd	nd	100,000
Benzene	0.5	nd	nd	nd	nd	0.5
Bromodichloromethane	0.5	nd	nd	nd	nd	67,000
Bromoform	0.5	nd	nd	nd	nd	5
Bromomethane	0.5	nd	nd	nd	nd	0.89
Carbon Tetrachloride	0.2	nd	nd	nd	nd	0.2
Chlorobenzene	0.5	nd	nd	nd	nd	140
Chloroform	0.5	nd	nd	nd	nd	2
Dibromochloromethane	0.5	nd	nd	nd	nd	65,000
Dichlorodifluoromethane	1.0	nd	nd	nd	nd	3,500
1,2-Dichlorobenzene	0.5	nd	nd	nd	nd	150
1,3-Dichlorobenzene	0.5	nd	nd	nd	nd	7,600
1,4-Dichlorobenzene	0.5	nd	nd	nd	nd	0.5
1,1-Dichloroethane	0.5	nd	nd	nd	nd	11
1,2-Dichloroethane	0.5	nd	nd	nd	nd	0.5
1,1-Dichloroethylene	0.5	nd	nd	nd	nd	0.5
cis-1,2-Dichloroethylene	0.5	nd	nd	nd	nd	1.6
trans-1,2- Dichloroethylene	0.5	nd	nd	nd	nd	1.6
1,2-Dichloropropane	0.5	nd	nd	nd	nd	0.58
1,3-Dichloropropene	0.5	nd	nd	nd	nd	0.5
1,2-Dibromoethane	0.2	nd	nd	nd	nd	0.2
Ethylbenzene	0.5	nd	nd	nd	nd	54
Hexane	1.0	nd	nd	nd	nd	5
Methyl Ethyl Ketone	5.0	nd	nd	nd	nd	21,000
Methyl Isobutyl Ketone	5.0	nd	nd	nd	nd	5,200
Methyl tert-butyl Ether	2.0	nd	nd	nd	nd	15
Methylene Chloride	5.0	nd	nd	nd	nd	26
Styrene	0.5	nd	nd	nd	nd	43
1,1,1,2- Tetrachloroethane	0.5	nd	nd	nd	nd	1.1
1,1,2,2- Tetrachloroethane	0.5	nd	nd	nd	nd	0.5
Tetrachloroethylene	0.5	nd	nd	nd	nd	0.5
Toluene	0.5	nd	nd	nd	nd	320
1,2,4-Trichlorobenzene	0.5	nd	nd	nd	nd	3
1,1,1-Trichloroethane	0.5	nd	nd	nd	nd	23
1,1,2-Trichloroethane	0.5	nd	nd	nd	nd	0.5
Trichloroethylene	0.5	nd	nd	nd	nd	0.5
Trichlorofluoromethane	1.0	nd	nd	nd	nd	2,000
Vinyl Chloride	0.5	nd	nd	nd	nd	0.5
Xylenes	0.5	nd	nd	nd	nd	72

Notes:

No VOC parameters were identified in any of the groundwater samples analysed.

[■] MDL – Method Detection Limit; nd – not detected above the MDL

Bold - concentration exceeds MOECP Table 7 standard

Ottawa Kingston North Bay

Table 13 **Analytical Test Results – Groundwater** PAHs (2015, 2018)

		Groundwater	Samples (µg/L)	MOTOR Table 7	
Parameter	MDL	Nov.27, 2015	Aug.2, 2018	MOECP Table 7 Standards	
	(µg/L)	BH7-GW1	BH10-GW1	(µg/L)	
Acenaphthene	0.05	0.08	nd	17	
Acenaphthylene	0.05	nd	nd	1	
Anthracene	0.01	0.07	nd	1	
Benzo[a]anthracene	0.01	0.42	nd	1.8	
Benzo[a]pyrene	0.01	0.46	nd	0.81	
Benzo[b]fluoranthene	0.05	0.73	nd	0.75	
Benzo[g,h,i]perylene	0.05	<u>0.38</u>	nd	0.2	
Benzo[k]fluoranthene	0.05	<u>0.54</u>	nd	0.4	
Biphenyl	0.05	0.56	nd	1,000	
Chrysene	0.05	0.10	nd	0.7	
Dibenzo[a,h]anthracene	0.05	0.52	nd	0.4	
Fluoranthene	0.01	0.06	nd	44	
Fluorene	0.05	0.33	nd	290	
Indeno[1,2,3-cd]pyrene	0.05	nd	nd	0.2	
Methylnaphthalene (1&2)	0.05	nd	nd	1,500	
Naphthalene	0.05	nd	nd	7	
Phenanthrene	0.05	0.57	nd	380	
Pyrene	0.01	0.47	nd	5.7	

Notes:

- MDL Method Detection Limit
- nd not detected above the MDL
- **Bold** Value exceeds MOECP Table 7 Standard

PAH concentrations were identified in groundwater Sample BH7-GW1. benzo[g,h,i]perylene and benzo[k]fluoranthene parameters exceed MOECP Table 7 standards, while the remaining parameter concentrations detected are in compliance with Table 7. No PAH parameters were detected in Sample BH10-GW1, above the laboratory method detection limit.

The maximum final concentrations of all parameters analyzed in groundwater are summarized in Table 14 below.

Parameter	Maximum Concentration (μg/L)	Borehole/Sample Location	Depth Interval (mbgs)	
Acetone	47.0	BH2-GW1	1.47-2.97; Fill and Native Glacial Til	
Benzene	<u>5.2</u>	BH1-GW2	1.68-3.18; Fill	
Methyl Ethyl Ketone	113	BH2-GW1	1.47-2.97; Fill and Native Glacial Til	
Toluene	10.4	BH2-GW1	1.47-2:97, Fill and Native Glacial Til	
Xylenes	5.7	BH1-GW2	1.68-3.18; Fill	
PHC, F ₁	117	BH1-GW2	1.00-3.10, FIII	
PHC, F ₃	<u>4,490</u>	BH10-GW1	3.10-6.10; Bedrock	
PHC, F ₄	471	BH10-GW1		
Acenaphthene	0.08			
Anthracene	0.07			
Benzo[a]anthracene	0.42			
Benzo[a]pyrene	0.46			
Benzo[b]fluoranthene	0.73			
Benzo[g,h,i]perylene	0.38			
Benzo[k]fluoranthene	<u>0.54</u>	BH7-GW1	3.55-5.05; Bedrock	
Biphenyl	0.56	DH/-GWI	3.33-3.03, Bedrock	
Chrysene	0.10			
Dibenzo[a,h]anthracene	0.52			
Fluoranthene	0.06			
Fluorene	0.33			
Phenanthrene	0.57			
Pyrene	0.47			

The concentrations of all other parameters were below laboratory detection limits.

5.7 Quality Assurance and Quality Control Results

As per the Sampling and Analysis Plan, duplicate groundwater samples were obtained from the monitoring well installed in BH9 during the current sampling event. Groundwater Sample BH9-GW1 and its duplicate were analyzed for VOCs, with no concentrations detected above the method detection limit and are therefore within acceptable QA/QC parameters.

As per Table 5 in Section 4.7 of this report, Sample BH6-GW1 and its duplicate collected during the 2015 sampling event, were also analysed for VOCs, with concentrations detected. The relative percent difference (RPD) calculations for the original and duplicate samples are provided below.

Report: PE4330-2

Table 15				
QA/QC Calculations –	Groundw	ater – Nover	nber 27, 2015	j
Volatile Organic Comp	ounds			
				Г

MDL (µg/L)	BH6-GW1	Dup	RPD (%)	QA/QC Result
0.5	0.9	0.9	0	Meets target
0.5	11.8	11.8	0	Meets target
0.5	1.4	0.9	43	Exceeds Target
0.5	1.3	1.0	26	Exceeds Target
	(μg/L) 0.5 0.5 0.5	(μg/L) 0.5 0.9 0.5 11.8 0.5 1.4	(μg/L) BHo-GW1 Dup 0.5 0.9 0.9 0.5 11.8 11.8 0.5 1.4 0.9	(μg/L) BH6-GW1 Dup RPD (%) 0.5 0.9 0.9 0 0.5 11.8 11.8 0 0.5 1.4 0.9 43

Notes:

The RPD values for bromodichloromethane and chloroform were within 20%, and as such, are considered acceptable. The target range was exceeded for toluene and xylenes. However, during the most recent sampling event (2018), no VOC parameters were identified in Sample BH6-GW2. As such, the conclusions of the report are not considered to be affected.

All samples submitted as part of this Phase II ESA were handled in accordance with the Analytical Protocol with respect to holding time, preservation method, storage requirement, and container type.

As per Subsection 47(3) of O.Reg. 153/04 as amended by O.Reg. 269/11, a Certificate of Analysis has been received for each sample submitted for analysis, and all Certificates of Analysis are appended to this report.

Overall, the quality of the field data collected during this Phase II ESA is considered to be sufficient to meet the overall objectives of this assessment.

5.8 Phase II Conceptual Site Model

Potentially Contaminating Activities and Areas of Potential Environmental Concern

As indicated in the Phase I-ESA report and Section 2.2 of this report, the following PCAs are considered to result in APECs on the Phase II Property:

☐ Item 52 — Storage, maintenance, fuelling and repair of equipment, vehicles and material used to maintain transportation systems — based on a former automotive service garage on the Phase II Property (APEC 2).

[☐] All other parameter concentrations were below laboratory detection limits for both original and duplicate samples, and as such, are within acceptable QA/QC parameters.

Item 28 - Gasoline and Associated Products Storage in Fixed Tanks – based on the presence of a former on-site underground storage tank (UST) for the storage of waste oil associated with the aforementioned automotive service garage (APEC 3).
Item 28 – Gasoline and Associated Products Storage in Fixed Tanks – based on a former on-site retail fuel outlet (APEC 4 and APEC 5).

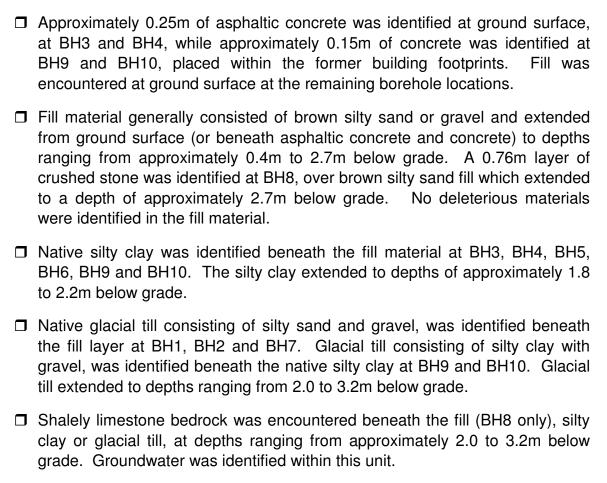
☐ Item 37 – Operation of Dry Cleaning Equipment – based on a former on-site dry cleaners and potential use of dry cleaning chemicals (APEC 1).

Various other potentially contaminating activities ranging from bulk fuel depots to spill records, were identified by various historical sources, for the neighbouring properties within 250m of the Phase II Property. Based on their separation distances and/or orientations with respect to the Phase II Property, these PCAs were not considered to represent APECs on the subject land. Off-site PCAs are depicted on Drawing PE4330-2 – Surrounding Land Use Plan, appended to the Phase I ESA report.

Contaminants of Potential Concern and Impacted Media

Contaminants of potential concern associated with the aforementioned PCAs include a combination of BTEX/PHCs (F1-F4), VOCs and/or PAHs in the soil and groundwater.

Subsurface Structures and Utilities


Underground service locates were completed prior to the subsurface investigation. Underground utilities on the Phase II Property include fibreoptic cable, electricity and natural gas. No private wells or septic systems are present on the Phase II Property or within 250m of the subject property. No other utilities or subsurface structures are present on the Phase II Property.

Physical Setting

Site Stratigraphy

The site stratigraphy, from ground surface to the deepest aquifer or aquitard investigated, is illustrated on Drawings PE4330-7 and 8 - Cross-Section A-A' and B-B'. Stratigraphy consists of:

Hydrogeological Characteristics

The water table at the subject site was encountered in the bedrock. Groundwater was also identified within the overburden at BH1, installed within the UST excavation.

Groundwater monitoring events were completed at the Phase II Property in September 2011, November 2015 and August 2018. During the 2011 and 2015 sampling events, groundwater was encountered at depths between 1.2 and 2.2m below existing grade. During the most recent 2018 sampling event, the groundwater depths at BH9 and BH10 were similar, measured at 1.8 and 1.9m below grade; the groundwater level measured at BH6 was deeper, measured at 4.6m below grade. It is noted that water levels fluctuate with seasonal variations.

Based on the groundwater elevations measured during the August 2018 monitoring event, groundwater contour mapping was completed. Groundwater contours are shown on Drawing PE4330-4 - Groundwater Contour Plan.

Report: PE4330-2 August 27, 2018

Based on the contour mapping, groundwater flow at the subject site appears to be in a southwesterly direction. A horizontal hydraulic gradient of approximately 0.12 m/m was calculated.

Approximate Depth to Bedrock

Based on the results of the Phase II ESA investigation the approximate depth to bedrock at the subject site varies from 2 to 3.2mbgs.

Approximate Depth to Water Table

Depth to water table at the subject site varies between approximately 1.8 and 4.6m below existing grade.

Sections 41 and 43.1 of the Regulation

Section 41 of the Regulation (Site Condition Standards, Environmentally Sensitive Areas) does not apply to the RSC Property, in that there are no Environmentally Sensitive Areas in the vicinity of the RSC Property, and the soil pH at the RSC Property is between 5 and 9.

Section 43.1 of the Regulation does apply to the RSC Property in that it appears from the information available to date, that more than one third of the Phase II Property consists of soil greater than or equal to 2m in depth beneath the soil surface. The soil depths across the site will be confirmed at the time of excavation.

Fill Placement

Fill placement has occurred at the subject site. The fill material consists of crushed stone or silty sand with gravel. No deleterious materials were identified in the fill material which is considered to be associated with the pavement structure, the former building structure foundations or the infilling of the former excavations. The fill material was not analysed as part of the current Phase II ESA.

Proposed Buildings and Other Structures

The Phase II Property will be redeveloped with a multi-storey mixed-use building with surface level parking and two levels of underground parking.

Existing Buildings and Structures

There are no buildings present on the Phase II Property, although the concrete floor slab of the former building structure remains in place.

Water Bodies

There are no water bodies on the Phase II Property or within the immediate vicinity of the subject land.

Areas of Natural Significance

No areas of natural significance are present on or within the vicinity of the Phase II Property.

Environmental Condition Prior to Site Remediation

Areas Where Contaminants are Present

Based on screening and analytical results, benzene and xylenes were present in soil at concentrations greater than the MOECP Table 7 Standards in the native glacial till, just above the bedrock, at BH1, within the former tank nest. Concentrations of benzene, PHC (F₃), benzo[g,h,i]perylene and benzo[k]fluroanthene were identified in the groundwater at BH1, BH7 and BH10, at concentrations exceeding the MOECP Table 7 standards. Areas where contaminants are present are shown by parameter group on Drawings PE4430-5 and 6 – Analytical Testing Plans.

Types of Contaminants

Based on the PCAs identified on the Phase II Property, Contaminants of Potential Concern (CPCs) include BTEX, VOCs, PHCs and/or PAHs in soil and groundwater.

Based on the results of the Phase II ESA, the contaminants of concern at the subject site are benzene and xylenes in soil, and benzene, PHC (F₃), benzo[g,h,i]perlyene and benzo[k]fluoranthene in groundwater.

Contaminated Media

Based on the results of the Phase II-ESA, impacted soil and groundwater exceeding the MOECP Table 7 standards, was identified beneath the Phase II Property.

What is Known About The Area Where Contaminants Are Present

Soil (native glacial till) impacted with a benzene and xylene concentration exceeding the MOECP Table 7 standard was identified at BH1, within the former tank nest, just above the bedrock.

Groundwater impacted with a benzene concentration exceeding the MOECP Table 7 standard was identified within the overburden at BH1. Concentrations of PAHs exceeding the MOECP Table 7 standards were identified within the bedrock at BH7, in the area of former waste oil storage. A concentration of PHC (F₃) exceeding the MOECP Table 7 standard was identified in the bedrock at BH7 and BH10, within the footprint of the former waste oil storage area nd automotive service garage bays.

Distribution of Contaminants

The approximate horizontal distribution of contaminants in soil is shown on the following Drawing PE4330-5A – Analytical Testing Plan – Soil (BTEX). The approximate horizontal distribution of contaminants in groundwater is shown on the following drawings:

☐ Drawing PE4330-6A – Analytical Testing Plan – Groundwater (BTEX, VOCs);
□ Drawing PE4330-6B – Analytical Testing Plan – Groundwater (PHCs); and
☐ Drawing PE4330-6C – Analytical Testing Plan – Groundwater (PAHs).
The approximate vertical distribution of contaminants in soil and groundwater is shown on the following drawings:
□ Drawing PE4330-7A - Cross-Section A-A' - Soil (BTEX);
☐ Drawing PE4330-7C – Cross-Section A-A' – Groundwater (BTEX/VOCs);
□ Drawing PE4330-8B— Cross-Section B-B' – Groundwater (BTEX/VOCs);
□ Drawing PE4330-8C - Cross-Section B-B' - Groundwater (PHC (F1-F4)); and
☐ Drawing PE4330-8D— Cross-Section B-B' — Groundwater (PAHs).

Discharge of Contaminants

Petroleum hydrocarbon and BTEX concentrations are expected to have been associated with direct releases to the subsurface from the former tank nest and the former underground waste oil tank and/or floor drain and oil-water separator within the former garage.

The PAH concentrations detected in the groundwater are considered to have been associated with a direct release from the former buried waste oil.

Migration of Contaminants

Physical transport of contaminated soil at the subject site does not appear to be occurring. The benzene impacted soil within the former tank nest is a residual concentration remaining subsequent to the former remedial excavation conducted by others.

Contaminant concentrations are considered to have migrated to the groundwater within the bedrock through downward leaching and/or through fluctuations in the groundwater table. Horizontal migration of groundwater contaminants may be affected by groundwater flow through the bedrock.

Climatic and Meteorological Conditions

In general, climatic and meteorological conditions have the potential to affect contaminant distribution. Two ways by which climatic and meteorological conditions may affect contaminant distribution include the downward leaching of contaminants by means of the infiltration of precipitation, and the migration of contaminants via groundwater levels and/or flow, which may fluctuate seasonally. Based on the results of the Phase II ESA, downward leaching, fluctuation of the groundwater table and groundwater flow may have had a limited effect on the distribution of benzene, PAH and PHC (F₃) contaminants at the Phase II Property.

Potential for Vapour Intrusion

There are no buildings currently on the Phase II Property and therefore no potential for vapour intrusion. All soil and contaminated groudwater will be removed from the Phase II Property as part of the redevelopment of the site. As such, there is no anticipated potential for future vapour intrusion on the subject land.

Contaminant Transport Diagram

Please refer to Drawing PE4330-18 which illustrates and provides narrative notes explaining the contaminant release mechanisms, contaminant transport pathways, human and ecological receptors, receptor exposure points, and routes of exposure at the Phase II Property.

6.0 CONCLUSIONS

Assessment

A Phase II-Environmental Site Assessment (ESA) was conducted for the property addressed 1545 Bank Street, in the City of Ottawa, Ontario. The purpose of the Phase II ESA was to address the Areas of Potential Environmental Concern for the subject site identified during the Phase I ESA. The Phase II-ESA consisted of drilling a total of (10) boreholes, six of which were completed as groundwater monitoring wells. The Phase II ESA summarizes the findings of three (3) field programs conducted during the interim of 2011 through 2018. Of the six (6) monitoring wells placed onsite, three (3) were readily located during the current investigation.

Soil samples were obtained from the boreholes and were screened using visual observations and vapour measurements. Site soils generally consist of a layer of fill material, over silty clay or silty sand till, followed by shaley limestone bedrock. Based on the screening results, various samples were selected for analysis of benzene, toluene, ethylbenzene and xylenes (BTEX) or volatile organic compounds (VOCs), petroleum hydrocarbons (PHCs F₁-F₄) and polycyclic aromatic hydrocarbons (PAHs). Based on the analytical results, native soil beneath the former tank nest on the northwestern corner of the site, exceeds the Ontario Ministry of the Environment, Conservation and Parks (MOECP) Table 7 Standards for benzene and xylenes.

Groundwater samples collected from BH1, BH2, BH6, BH7, BH8, BH9 and BH10 were analysed for a combination of BTEX, VOCs, PHCs and/or PAHs. A concentration of PHC (F_2) exceeding the MOECP Table 7 standard was identified in BH1 during the September 2011 sampling event. During a subsequent June 2012 sampling event, PHC (F_2) was not detected above the laboratory method detection limit, however benzene was identified in Sample BH1-GW2 at a concentration exceeding the MOECP Table 7 standard.

Concentrations of benzo[g,h,i]perylene, benzo[k]fluoranthene and PHC (F₃) exceeding MOECP Table 7 standards, were identified in a groundwater sample recovered from BH7, within the former waste oil tank nest. A concentration of PHC (F₃) exceeding the MOECP Table 7 standard was identified in the groundwater recovered from BH10, within the footprint of the former automotive service garage bays. Based on the laboratory Certificate of Analysis, this sample result may have been biased high by a non-mineral based compound.

Recommendations

It is recommended that a soil and groundwater remediation program be carried out at the Phase II Property. It is our understanding that the site will be redeveloped with a multi-storey, mixed-used building with two (2) levels of underground parking. The soil and groundwater impacts present on the Phase II Property are not considered to pose an immediate concern to the property as it is currently vacant.

It is recommended that the soil and groundwater remediation program be completed in conjunction with the redevelopment of the subject land. Prior to the remediation program a representative sample of impacted soil will require a leachate analysis in accordance with Ontario Regulation 558, for disposal at an approved waste disposal facility. It is recommended that Paterson personnel be on-site at the time of the remediation program in order to direct the segregation and excavation of impacted soils and to conduct confirmatory sampling as required.

It is also recommended that prior to the remedial activities, an additional attempt be made to locate BH1 and BH7 to confirm the groundwater quality at these locations. In addition to resampling BH1 and BH7, the groundwater from BH10 should be resampled in order to confirm the previous PHC results and to provide delineation of PAH parameters previously identified in BH7 (2015).

STATEMENT OF LIMITATIONS 7.0

This Phase II - Environmental Site Assessment report has been prepared in general accordance with O.Reg. 153/04 as amended by O.Reg. 269/11, and meets the requirements of CSA Z769-00. The conclusions presented herein are based on information gathered from a limited sampling and testing program. The test results represent conditions at specific test locations at the time of the field program.

The client should be aware that any information pertaining to soils and all test hole logs are furnished as a matter of general information only and test hole descriptions or logs are not to be interpreted as descriptive of conditions at locations other than those of the test holes themselves.

Should any conditions be encountered at the subject site and/or historical information that differ from our findings, we request that we be notified immediately in order to allow for a reassessment.

This report was prepared for the sole use of Financial Eastern Star Group. Permission and notification from Financial Eastern Star Group and Paterson will be required to release this report to any other party.

PROFESSIONAL

MIS D'ARC

Paterson Group Inc.

Karyn Munch, P.Eng., QPESA

Kaup Munch:

Mark S. D'Arcy, P.Eng., QPESA

Report Distribution:

Financial Eastern Star Group

Paterson Group

FIGURES

FIGURE 1 - KEY PLAN

DRAWING PE4330-3 – TEST HOLE LOCATION PLAN

DRAWING PE4330-4 – GROUNDWATER CONTOUR PLAN

DRAWING PE4330-5A - ANALYTICAL TESTING PLAN - SOIL (BTEX)

DRAWING PE4330-5B - ANALYTICAL TESTING PLAN - SOIL (PHC (F₁-F₄), VOCs, PAHs)

DRAWING PE4330-6A - ANALYTICAL TESTING PLAN - GROUNDWATER (BTEX, VOCs)

DRAWING PE4330-6B - ANALTYICAL TESTING PLAN - GROUNDWATER (PHC (F₁-F₄))

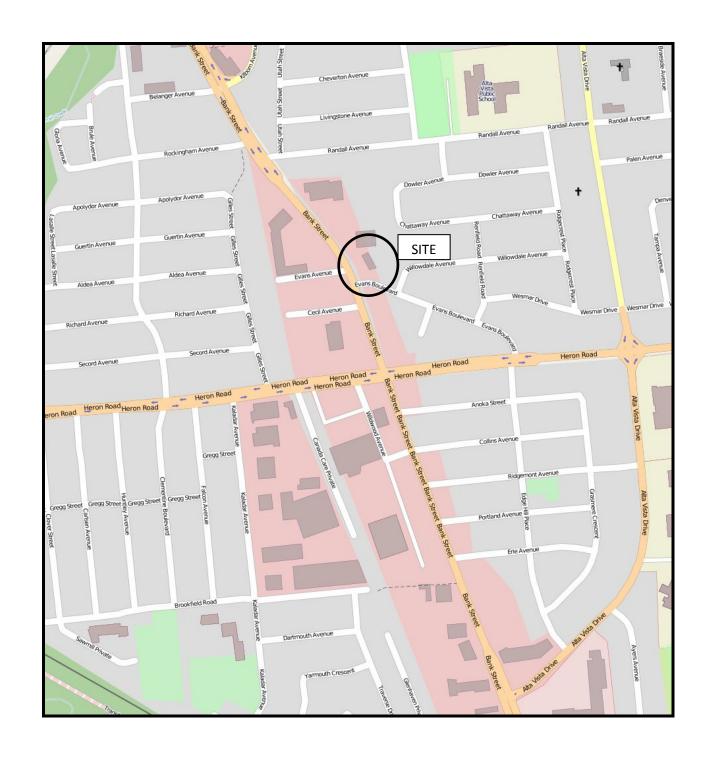
DRAWING PE4330-6C - ANALYTICAL TESTING PLAN - GROUNDWATER (PAHs)

DRAWING PE4330-7A – CROSS-SECTION A-A' – SOIL (BTEX)

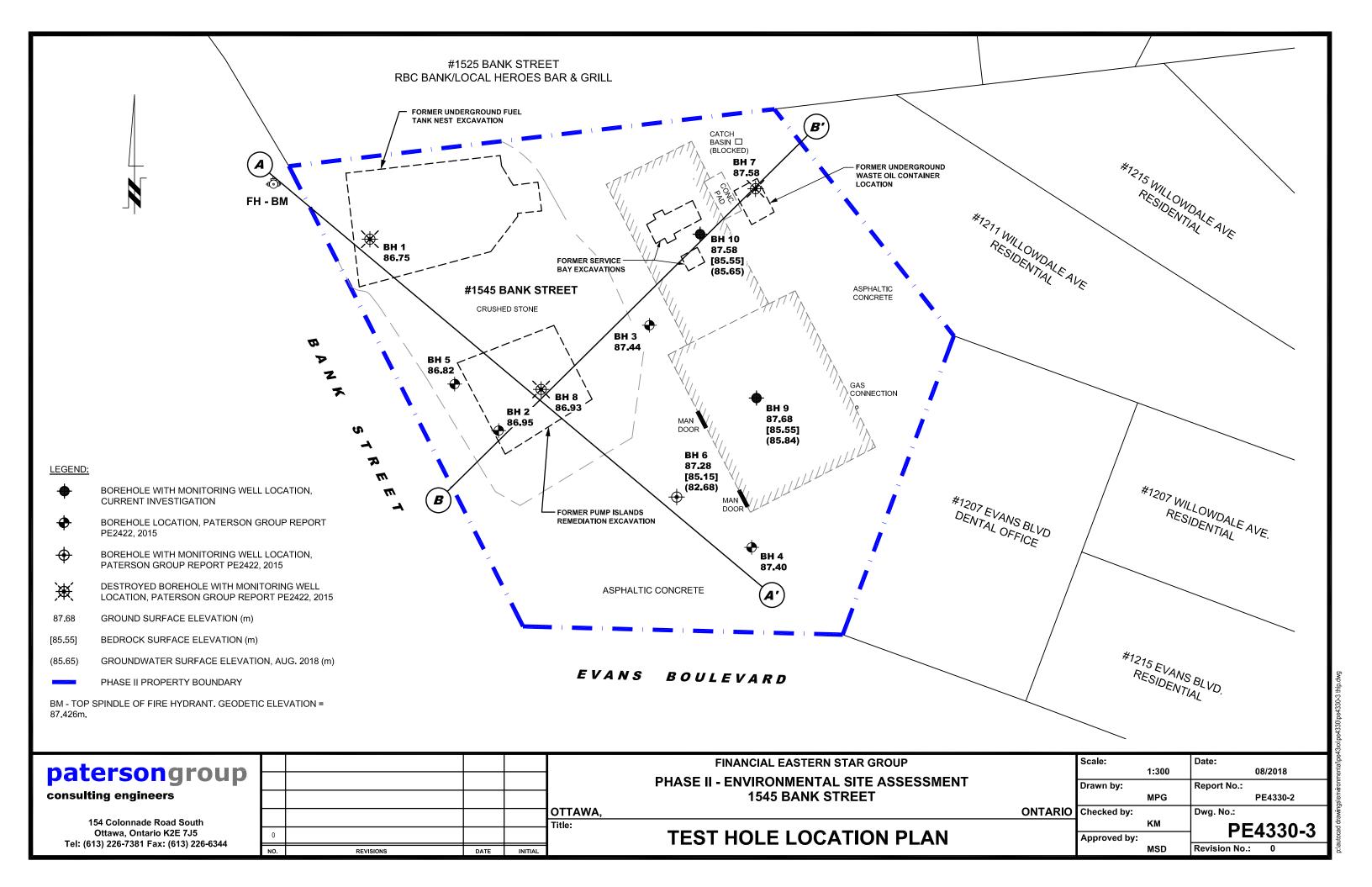
DRAWING PE4330-7B- CROSS-SECTION A-A' - SOIL (PHC (F₁-F₄), VOCs, PAHs)

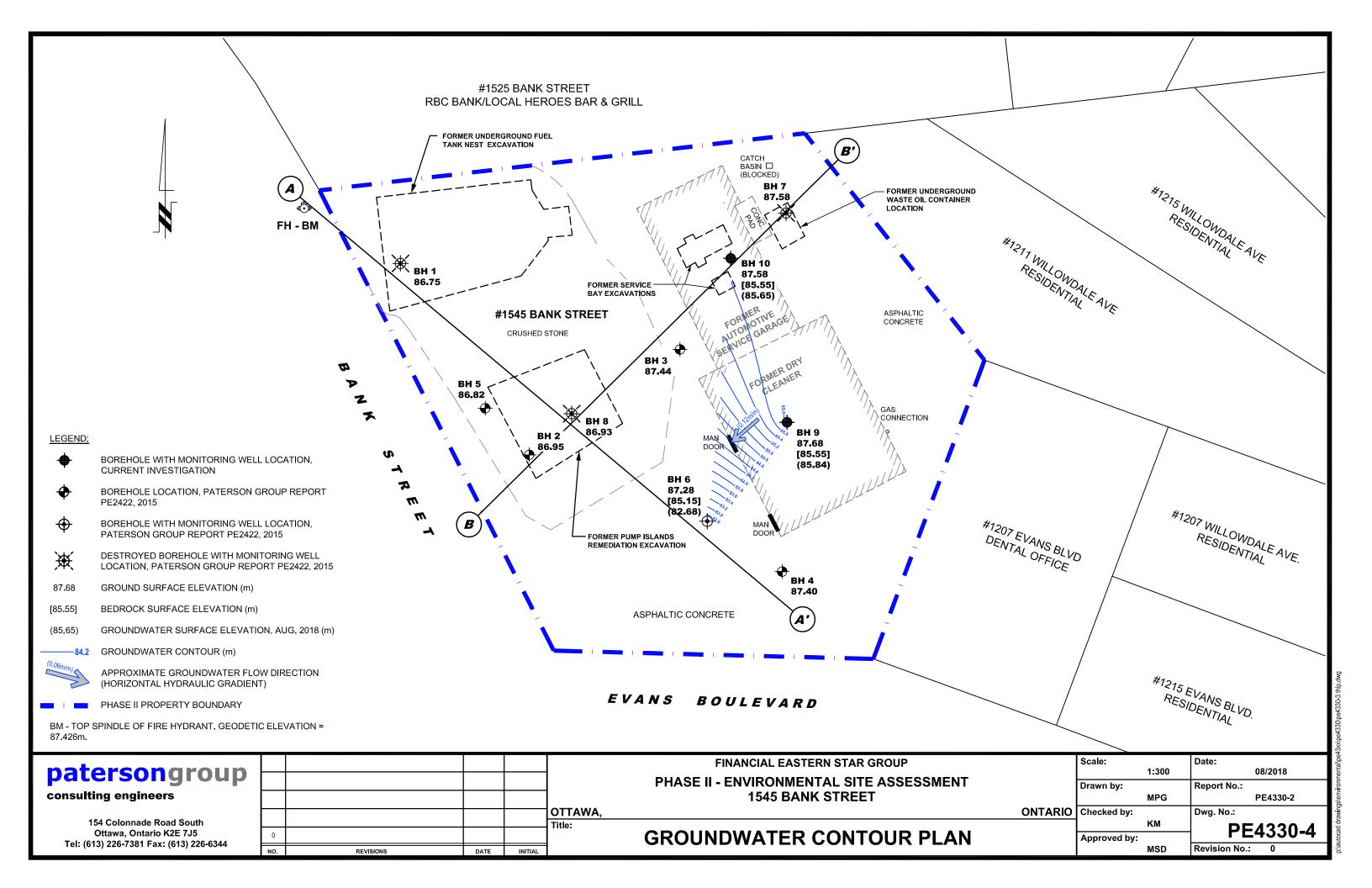
DRAWING E4330-7C CROSS-SECTION A-A' – GROUNDWATER (BTEX/VOCs)

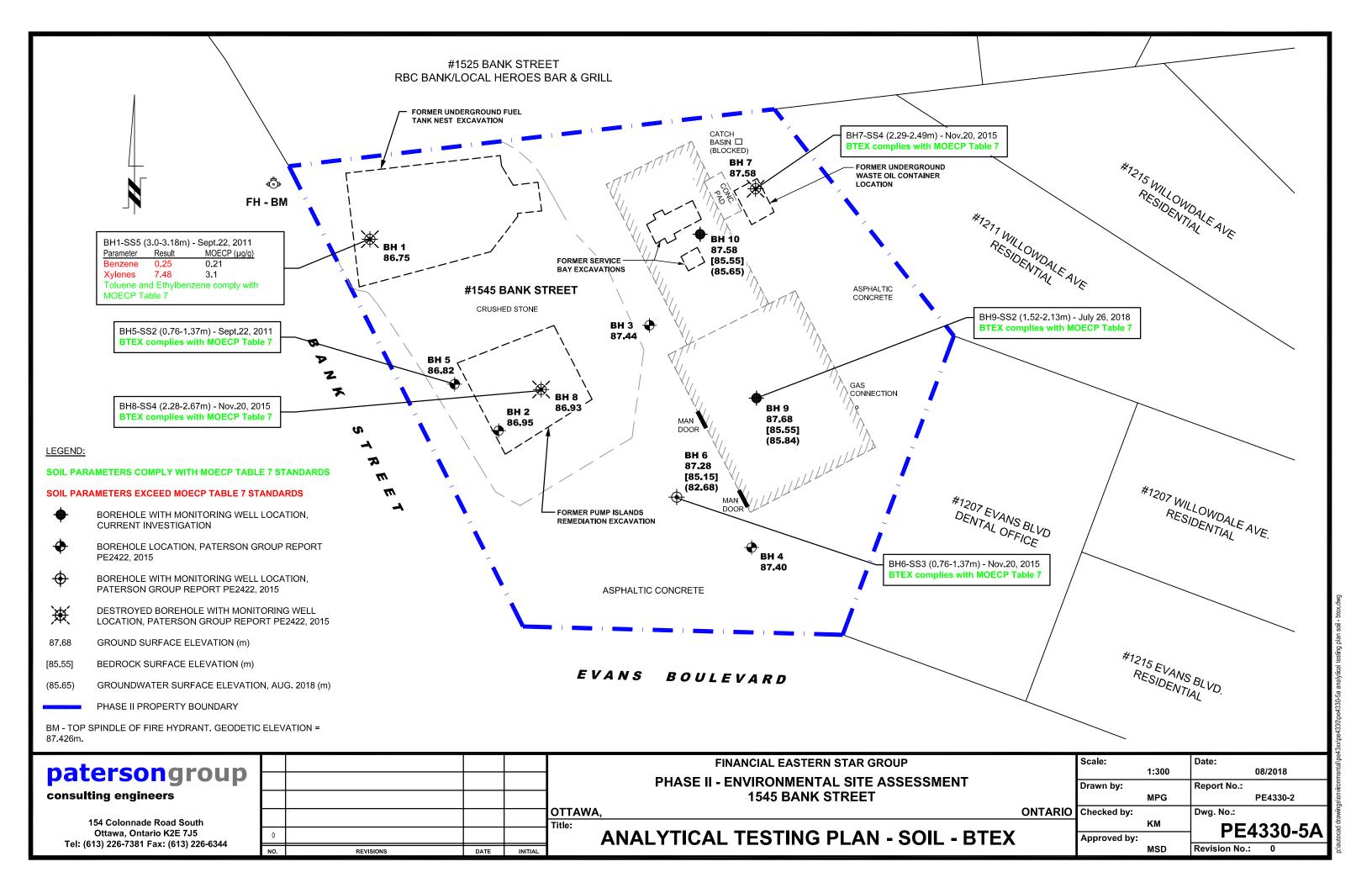
DRAWING PE4330-7D – CROSS-SECTION A-A' – GROUNDWATER (PHCs)

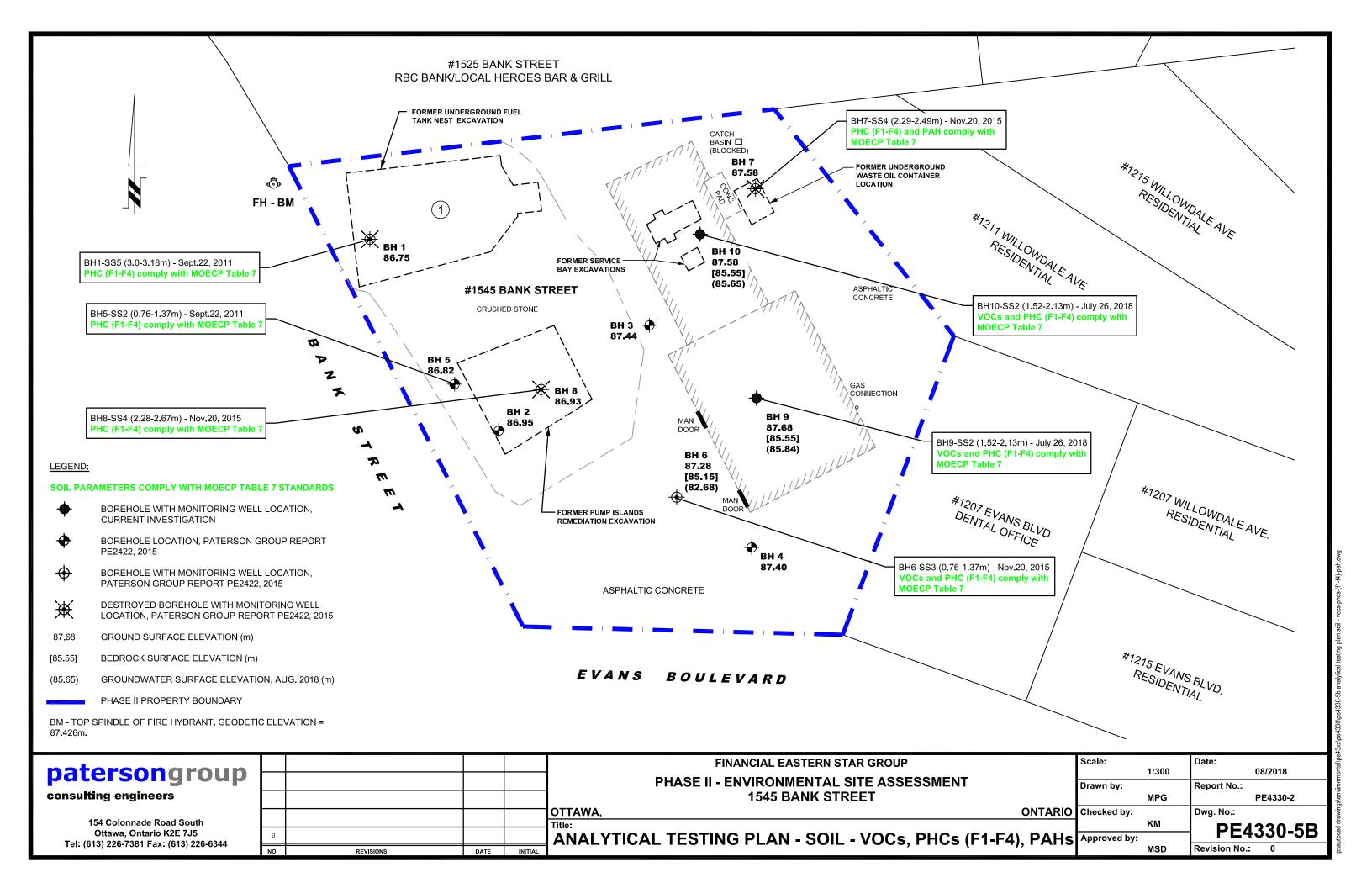

DRAWING PE4330-8A - CROSS-SECTION B-B' - SOIL (BTEX, PHC (F₁-F₄), VOCs, PAHs)

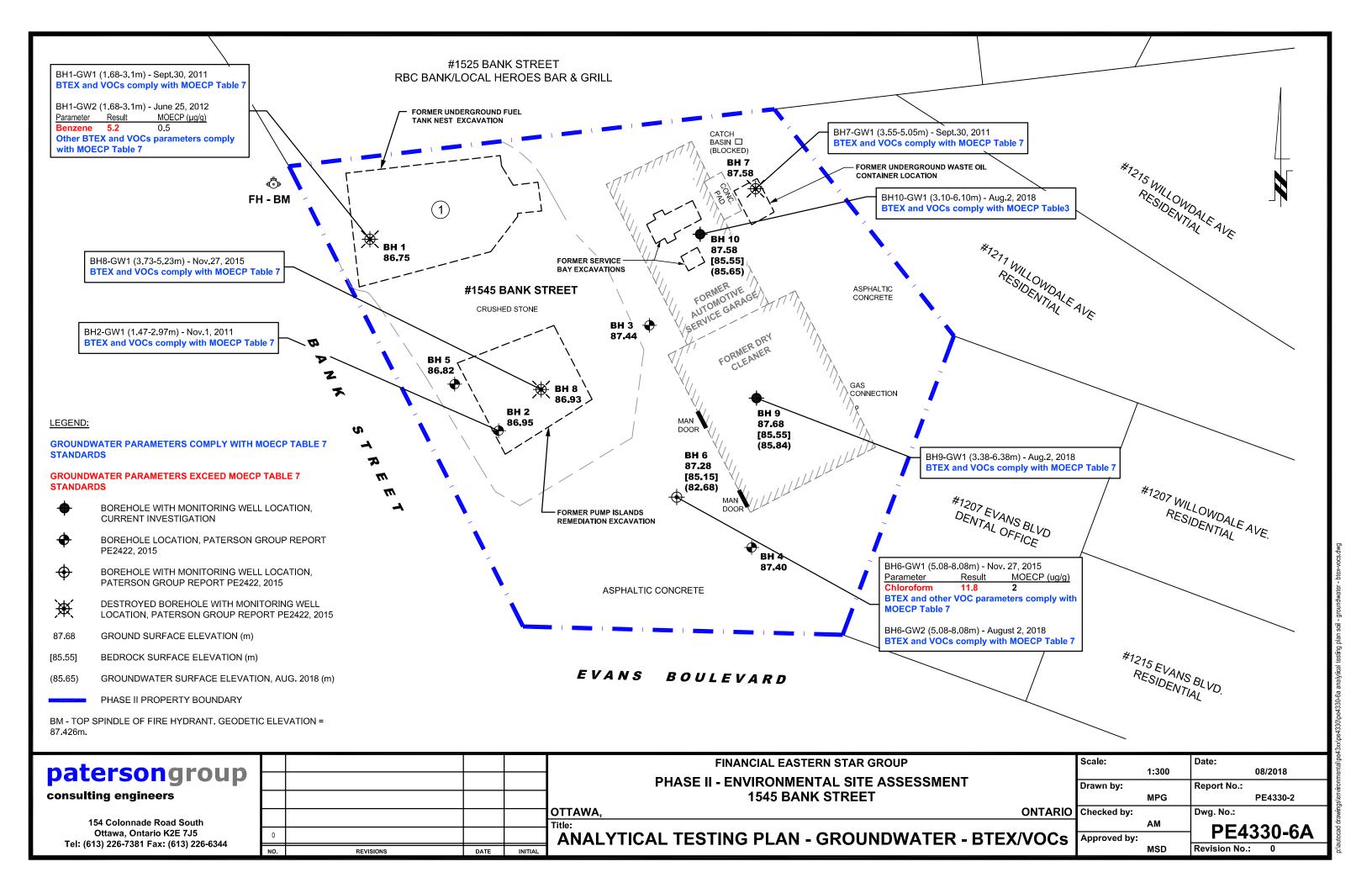
DRAWING PE4330-8B - CROSS-SECTION B-B' - GROUNDWATER (BTEX/VOCs)

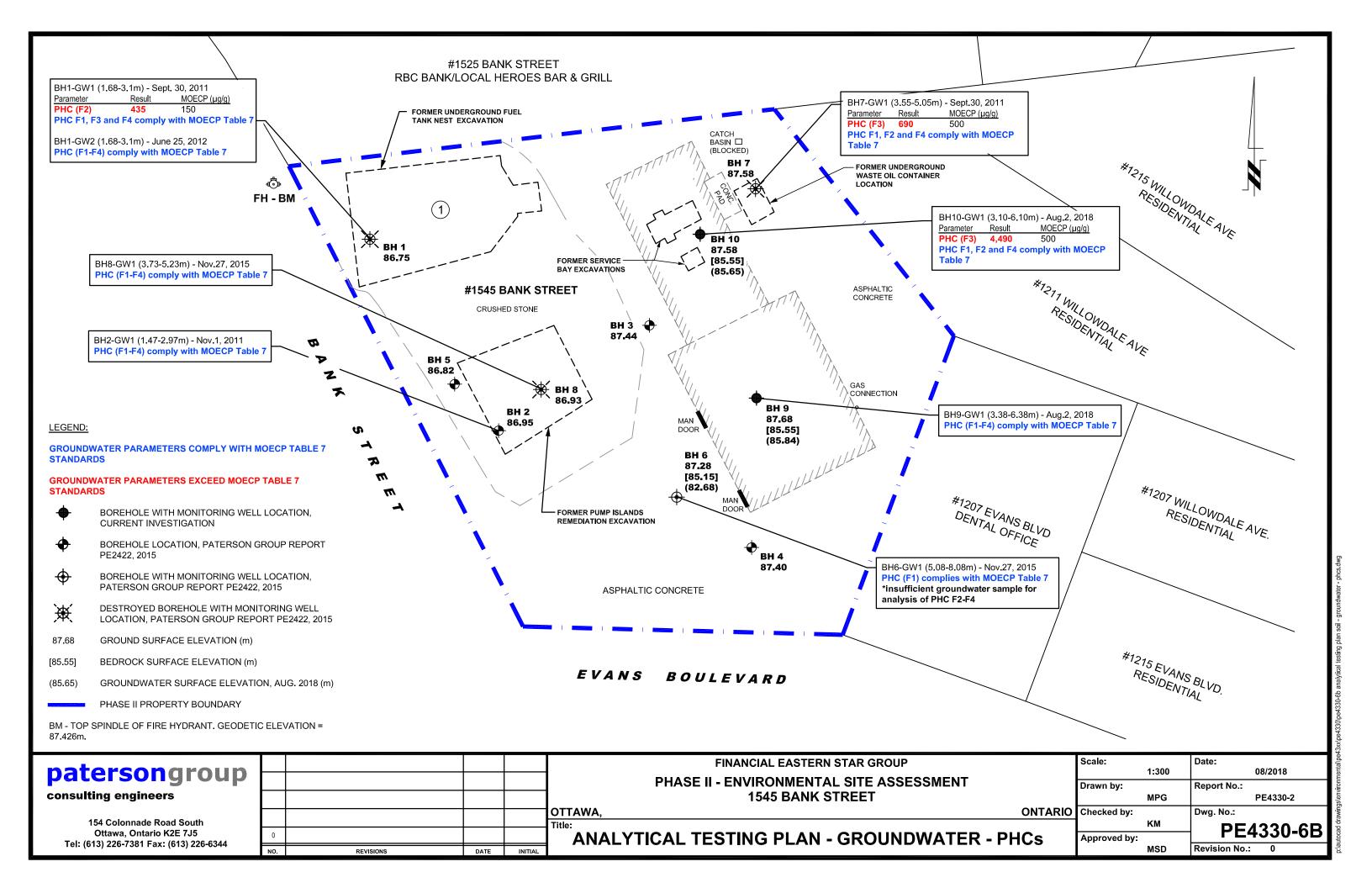

DRAWING PE4330-8C – CROSS-SECTION B-B' – GROUNDWATER (PHC (F_1-F_4))

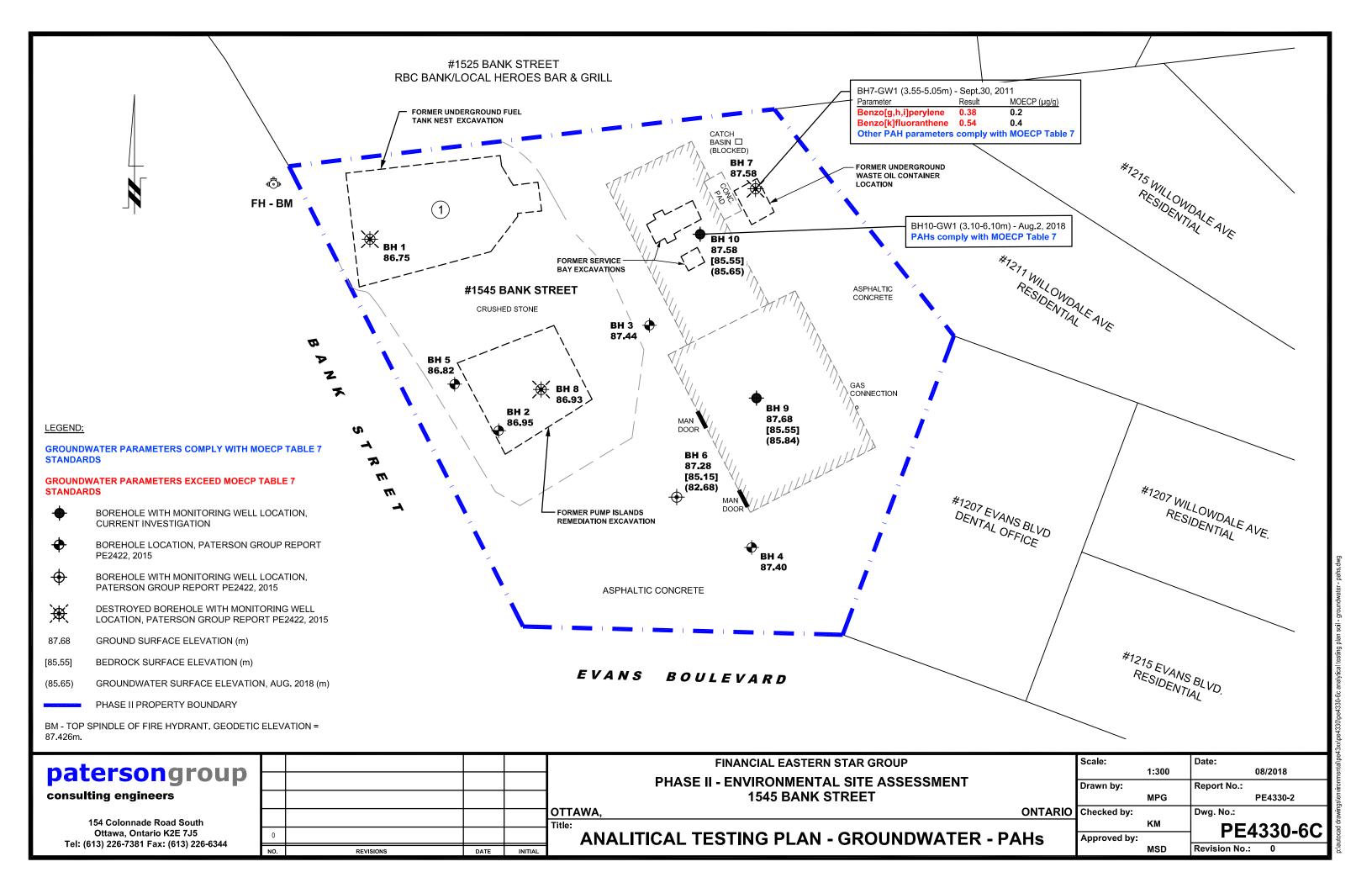

DRAWING PE4330-8D – CROSS-SECTION B-B' – GROUNDWATER (PAHs)

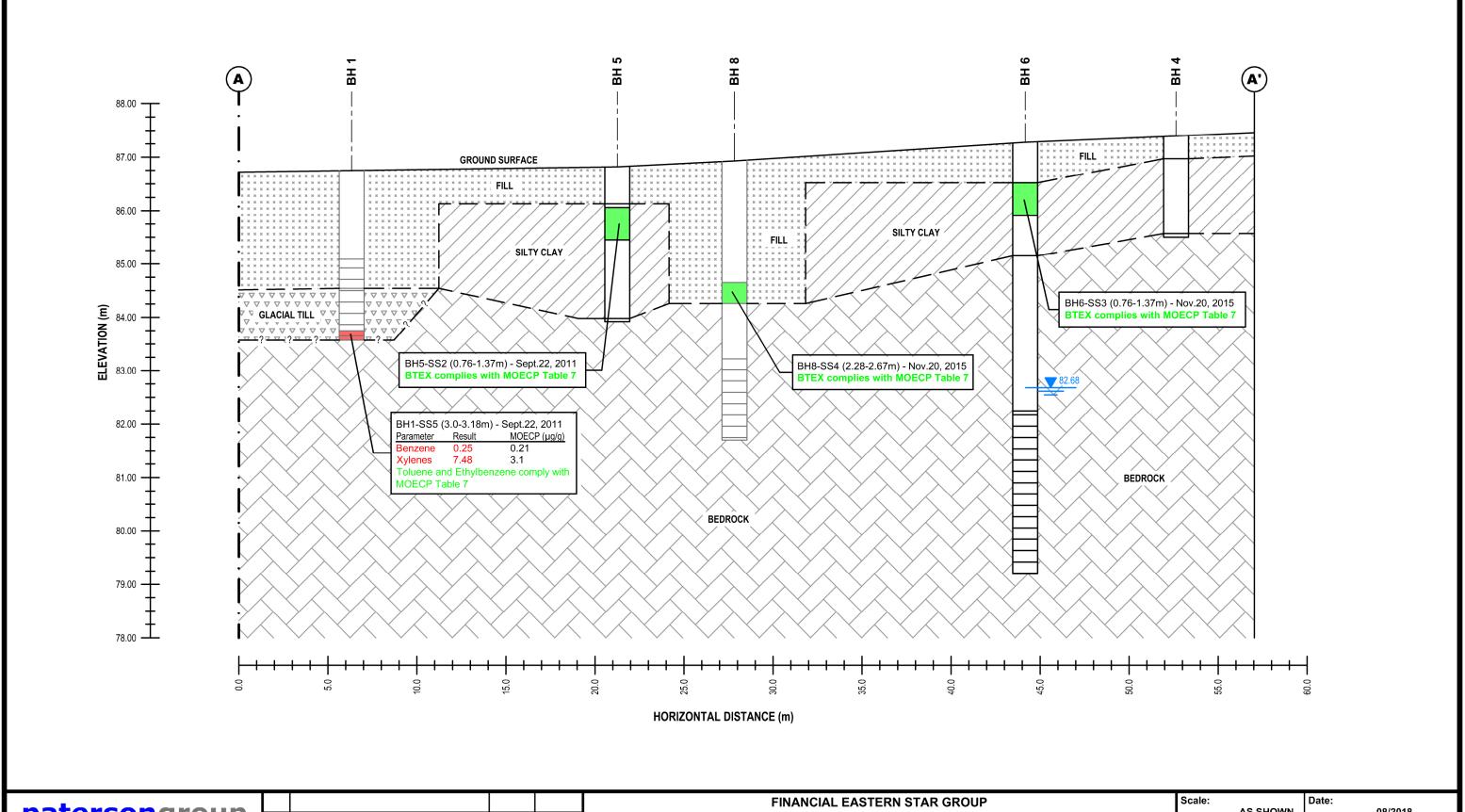

DRAWING PE4330-18 - CONTAMINANT TRANSPORT DIAGRAM




FIGURE 1 KEY PLAN



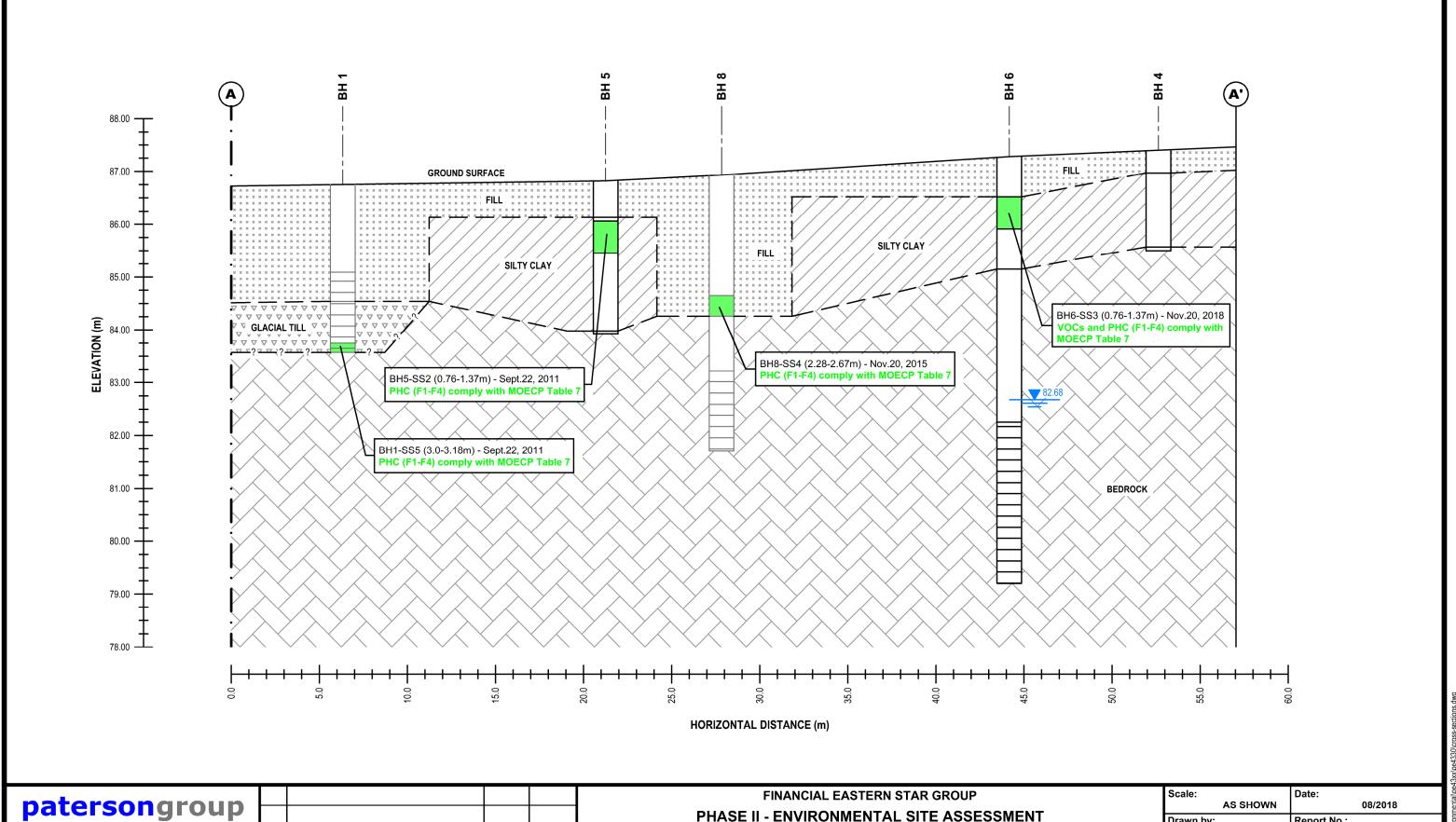




consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

0				OTTAV Title:
NO.	REVISIONS	DATE	INITIAL	


PHASE II - ENVIRONMENTAL SITE ASSESSMENT **1545 BANK STREET**

CROSS-SECTION A-A' - SOIL (BTEX)

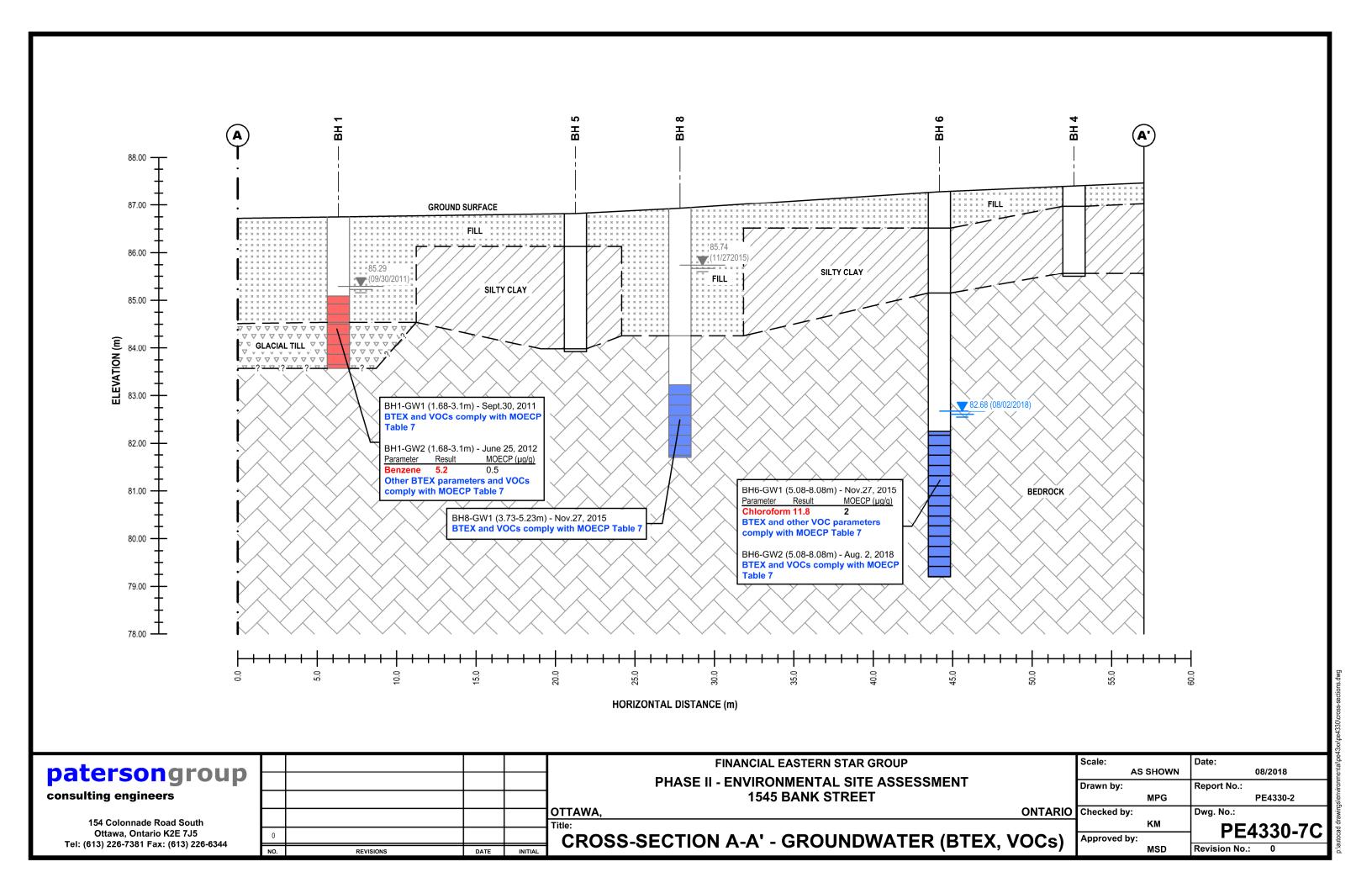
Scale:	Date:
AS SHOWN	08/2018
Drawn by:	Report No.:
MPG	PE4330-2
Checked by:	Dwg. No.:
KM	DE/220_7A

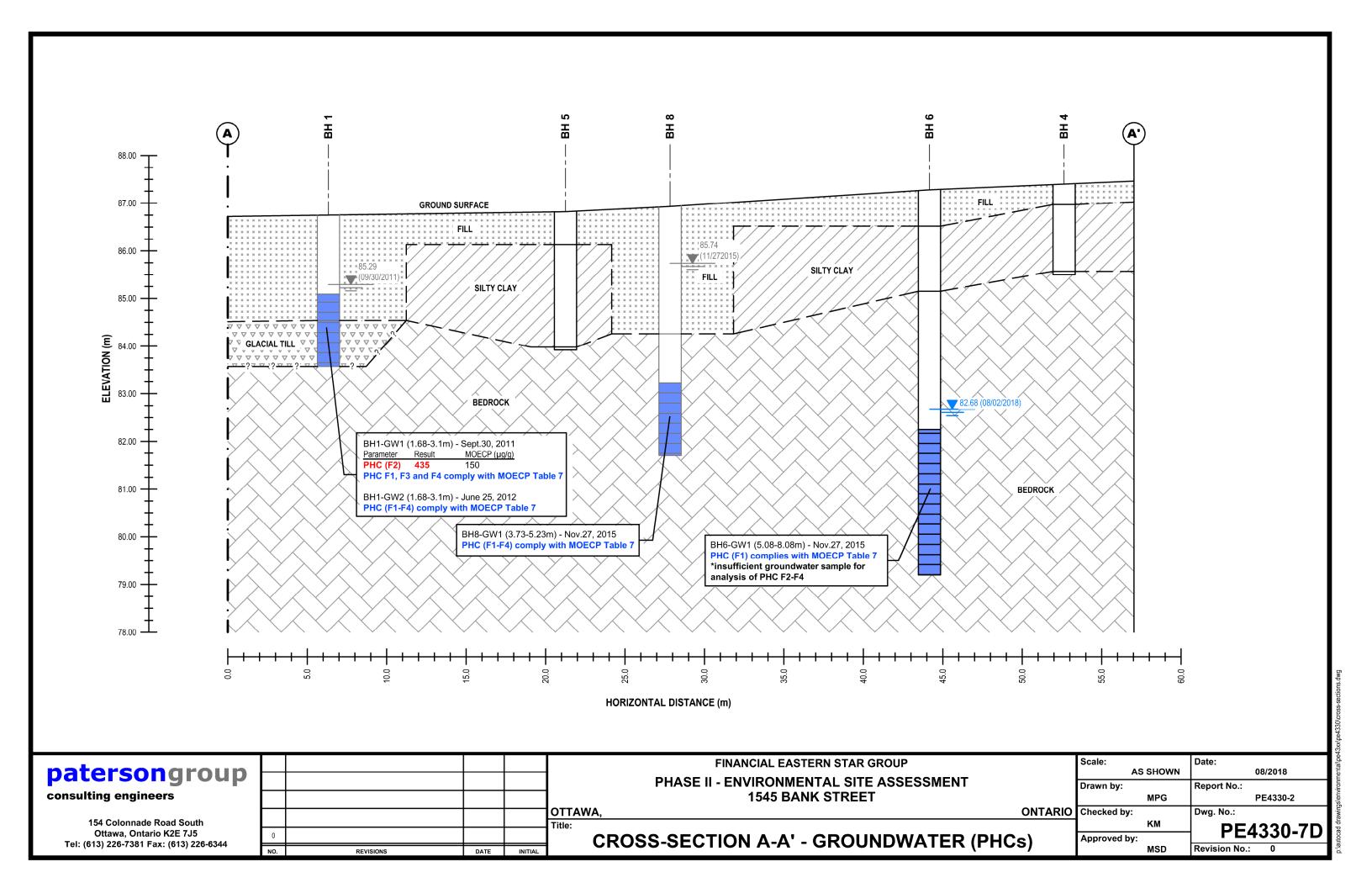
ONTARIO

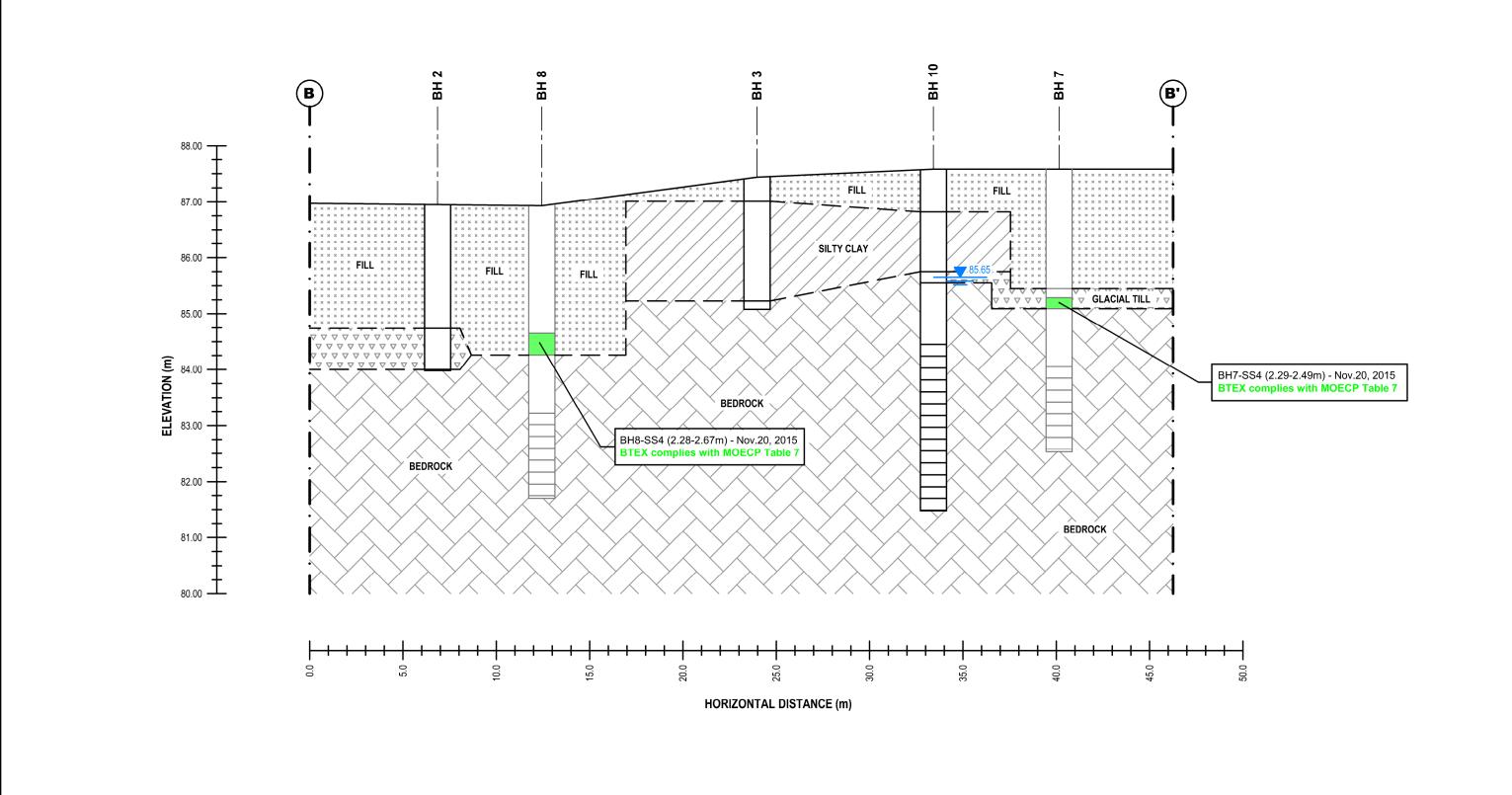
PE433U-/A Approved by: MSD Revision No.: 0

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344


0				OTTA
NO.	REVISIONS	DATE	INITIAL	


PHASE II - ENVIRONMENTAL SITE ASSESSMENT **1545 BANK STREET**


ONTARIO CROSS-SECTION A-A' - SOIL (VOCs, PHCs, PAHs)

Scale:		Date:
	AS SHOWN	08/2018
Drawn by:		Report No.:
	MPG	PE4330-2
Checked by	y:	Dwg. No.:
	KM	DE4220_7B

PE433U-/B Approved by: Revision No.: 0

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

0				OTTAV
NO.	REVISIONS	DATE	INITIAL	

FINANCIAL EASTERN STAR GROUP PHASE II - ENVIRONMENTAL SITE ASSESSMENT 1545 BANK STREET

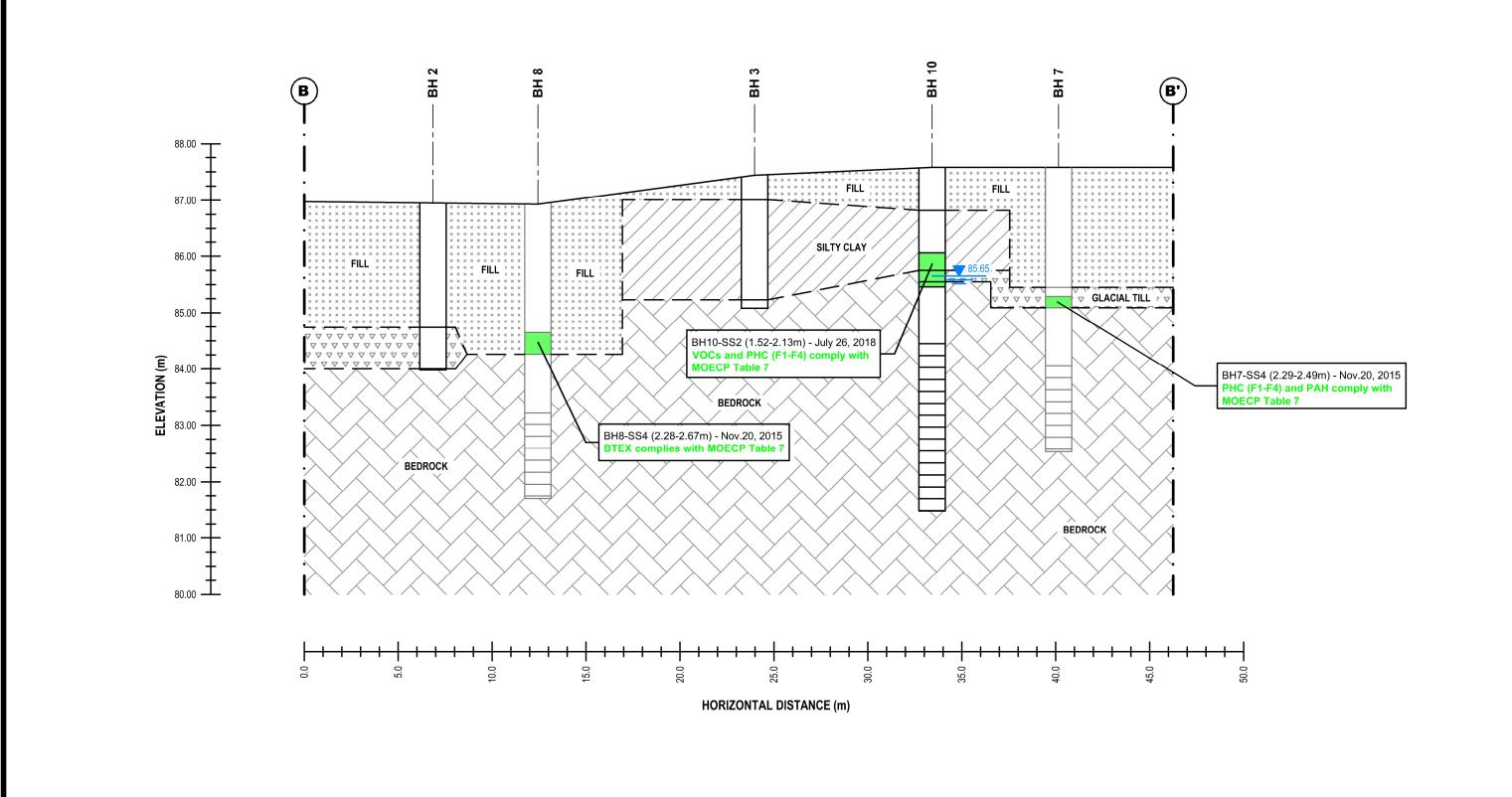
CROSS-SECTION B-B' - SOIL (BTEX)

Scale:		Date:
	AS SHOWN	08/2018
Drawn by:		Report No.:
	MPG	PE4330-2
Checked by	<i>r</i> :	Dwg. No.:
	KM	DE 4000 0A

ONTARIO

Checked by:

KM


Approved by:

MSD

Dwg. No.:

PE4330-8A

Revision No.: 0

consulting engineers

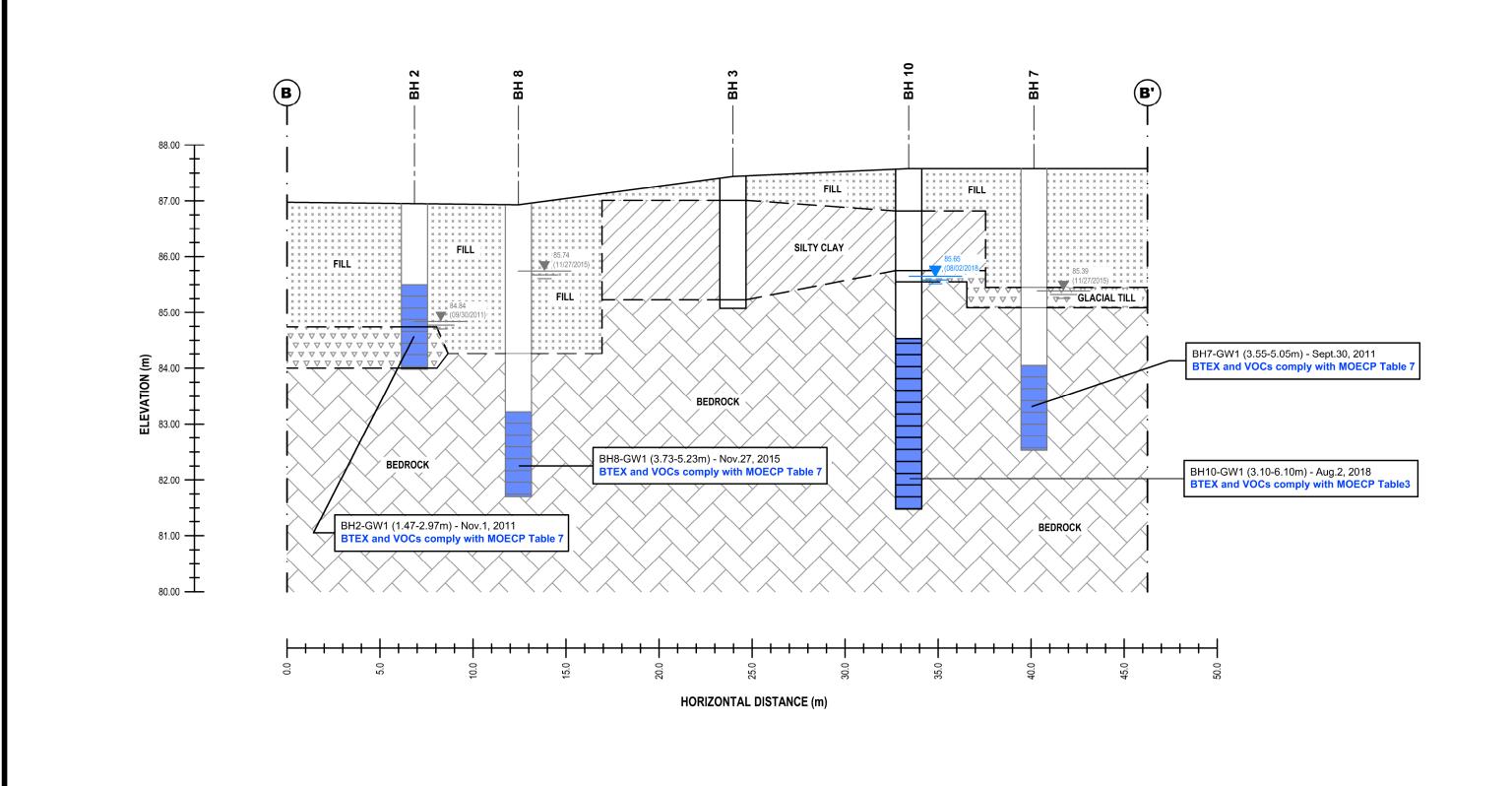
154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OT Title
0				11116
NO.	REVISIONS	DATE	INITIAL	

FINANCIAL EASTERN STAR GROUP PHASE II - ENVIRONMENTAL SITE ASSESSMENT **1545 BANK STREET**

ONTARIO Checked by: CROSS-SECTION B-B' - SOIL (VOCs, PHCs, PAHs)

Scale:


Report No.: Drawn by: PE4330-2 Dwg. No.: Approved by:

Date:

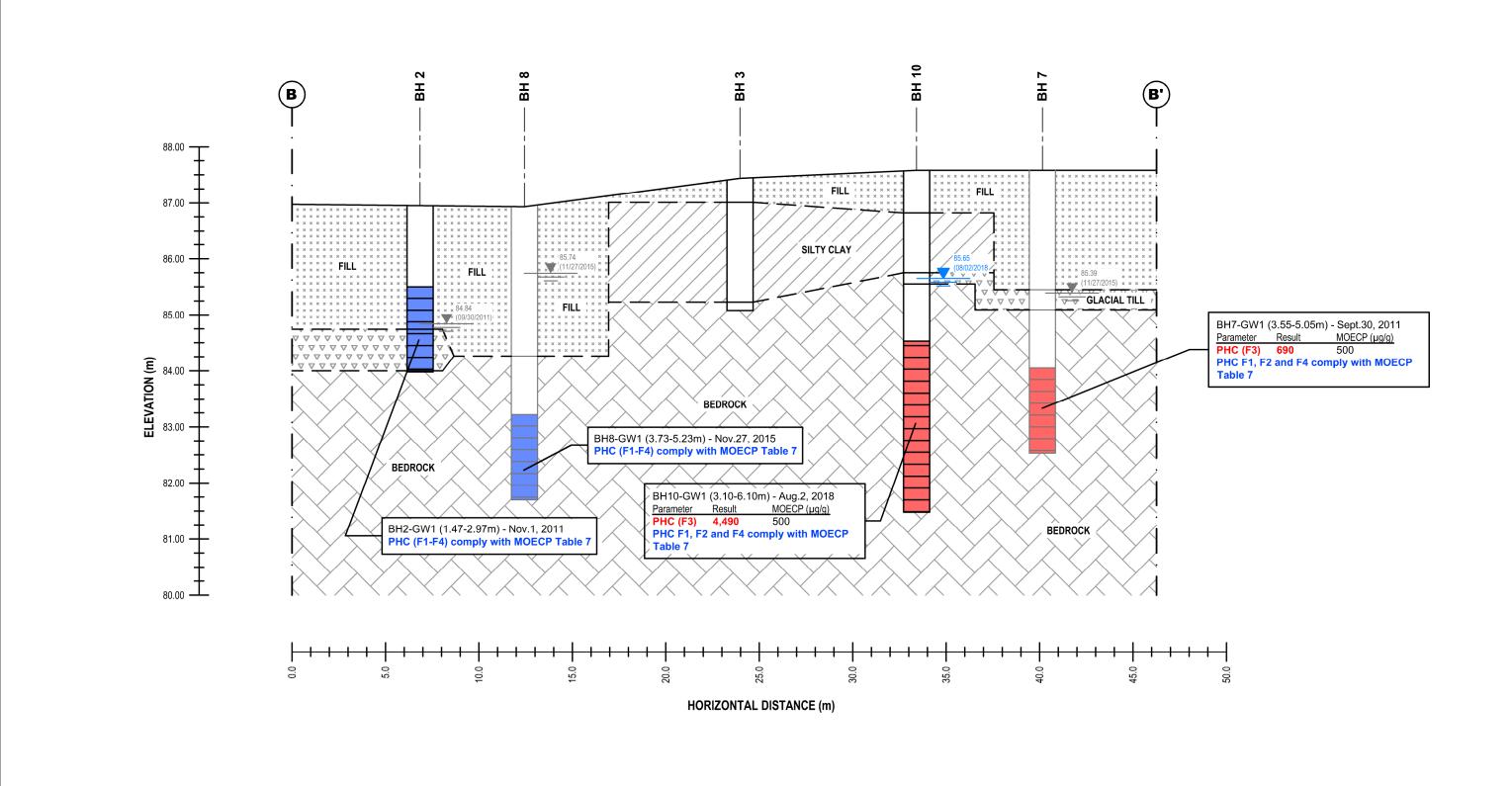
AS SHOWN

PE4330-8B Revision No.: 0 MSD

08/2018

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344


0				OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	CITO

FINANCIAL EASTERN STAR GROUP PHASE II - ENVIRONMENTAL SITE ASSESSMENT **1545 BANK STREET**

ONTARIO Checked by: **CROSS-SECTION B-B' - GROUNDWATER (BTEX, VOCs)**

Scale: Date: **AS SHOWN** 08/2018 Report No.: Drawn by: PE4330-2 Dwg. No.:

PE4330-8C Approved by: Revision No.: 0 MSD

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

0				OTTA\ Title:
NO.	REVISIONS	DATE	INITIAL	

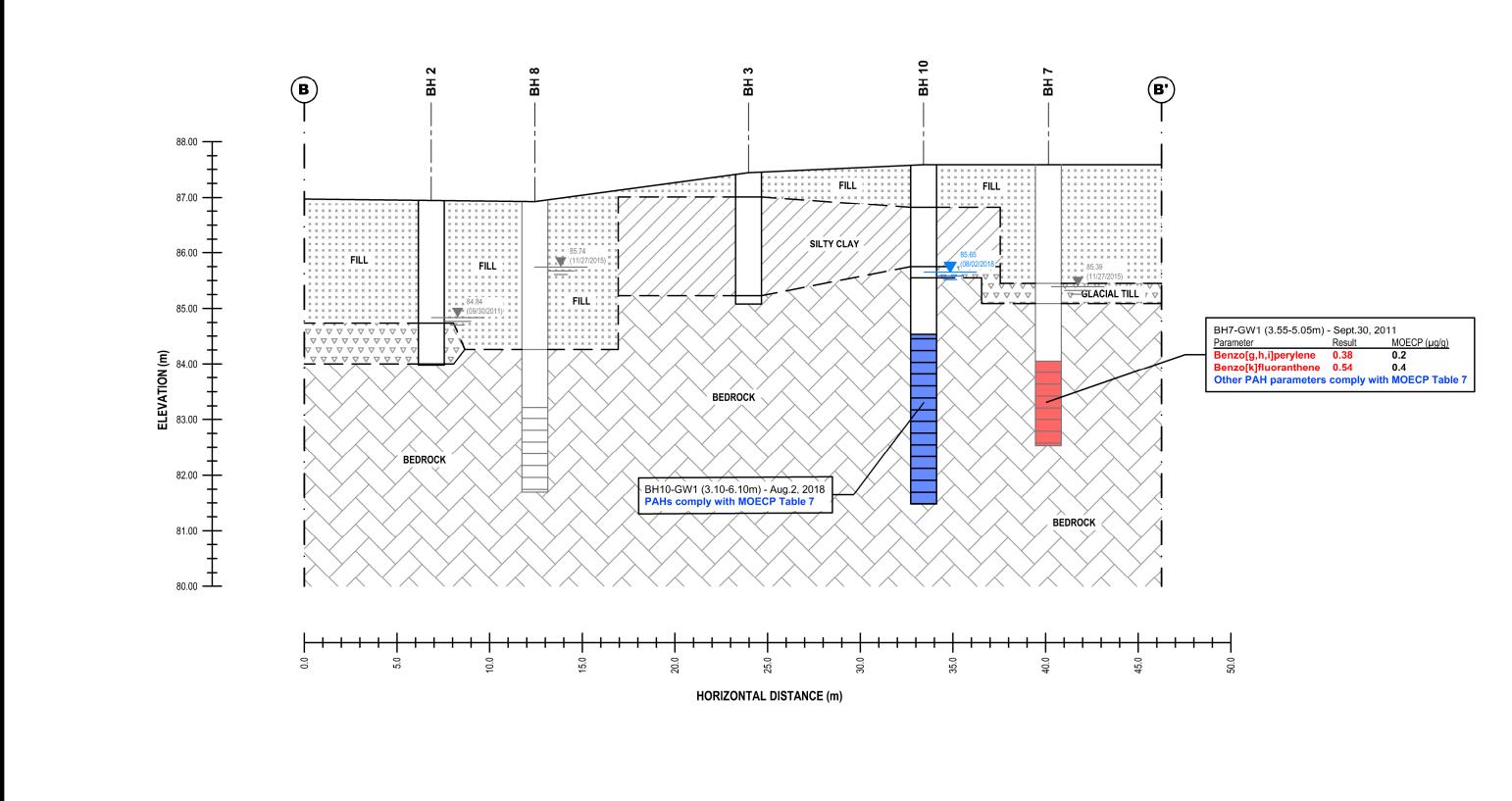
FINANCIAL EASTERN STAR GROUP PHASE II - ENVIRONMENTAL SITE ASSESSMENT 1545 BANK STREET

1545 BANK STREET

VA,

ONTARIO

OROSS-SECTION B-B' - GROUNDWATER (PHCs)


Scale:		Date:
	AS SHOWN	08/2018
Drawn by:		Report No.:
	MPG	PE4330-2
Checked by	/ :	Dwg. No.:
	KM	DE4220 0D

Checked by:

KM

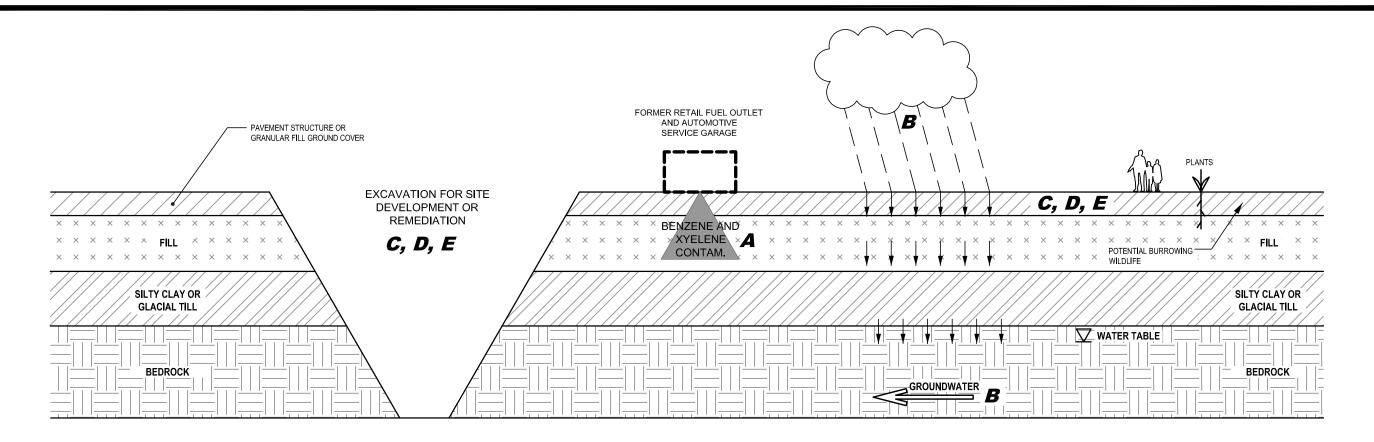
PE4330-8D

Revision No.: 0

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

				OTTAWA,
0	PENADONO			Title:
NO.	REVISIONS	DATE	INITIAL	


FINANCIAL EASTERN STAR GROUP PHASE II - ENVIRONMENTAL SITE ASSESSMENT 1545 BANK STREET

CROSS-SECTION B-B' - GROUNDWATER (PAHs)

	Scale:	Date:
	AS SHOWN	08/2018
	Drawn by:	Report No.:
	MPG	PE4330-2
ONTARIO	Checked by:	Dwg. No.:
	KM	DE 4000 OF

Checked by: KM PE4330-8E

Approved by: MSD Revision No.: 0

NARRATIVE NOTES:

Contaminant Release Mechanisms

Contaminants of concern for the Phase II Property include benzene and xylenes in the soil and benzene, PHC F3 and PAHs(benzo[g,h,i] perylene and benzene, it is our interpretation that the contaminants were released directly to the subsurface through leaks in the former USTs and/or the associated fuel lines.

Contaminant Transport Pathways

- Physical Transport one potential contaminant transport pathway is the physical transport from one location to another of the impacted soil, either intentionally, by earth moving equipment, vehicle traffic, or pedestrian traffic. Physical transport of contaminants is not considered to have contributed to the movement of contaminants on the Phase II Property.
 - Precipitation/Infiltration/Leaching The Phase II Property was largely paved during operation of the former retail fuel outlet and automotive service garage. Therefore precipitation / leaching / infiltration is not considered to have significantly affected contaminant transport. PHCs have a low solubility in groundwater and while some of the contaminant does dissolve in groundwater, the remaining portion floats on the surface of the water table. The plume of contamination beneath the subject property is considered to be a small residual dissolved phase plume within the upper zone of the groundwater table, as the source was removed and free product was not observed at the time of the Phase II groundwater sampling event. Seasonal fluctuations of the groundwater table and groundwater flow can contribute to migration of contaminants.

Human and Ecological Receptors

- Human Receptors -Potential human receptors are considered to be limited to construction workers and environmental professionals who may contact the soil during the remediation and/or development of the site. The site is located in a municipally serviced area, there are no groundwater well users in the area who may be potential receptors.
 - Ecological Receptors Potential Ecological receptors include plants whose root structures may intercept the contaminated soil layer (considered unlikely given the depth of the impacts), wildlife which may intercept the contaminated soil layer during burrowing, and groundwater/surface water receptors downgradient of the subject site at groundwater discharge points.

Receptor Exposure Points

- Human Receptors Exposure points for human receptors consist of remedial excavations, service trenches, excavations for site buildings, and/or test pits.
- Ecological receptors Based on the presence of asphaltic concrete and granular materials over most of the site and the depth of the impact soil, there is limited potential for contact with ecological receptors at ground surface. There is potential for contact with impacted groundwater and surface water receptors at downgradient discharge points. The most likely exposure points for ecological receptors include the root zones of plants and the burrows of burrowing wildlife.

- Human receptors Routes of exposure for human receptors (construction workers and environmental professionals) includes dermal contact, accidental ingestion, and inhalation (impacted soil could be inhaled as particulate dust).
- Ecological Receptors Routes of exposure for ecological receptors include ingestion, dermal contact, and inhalation.

patersongroup

consulting engineers

154 Colonnade Road South Ottawa, Ontario K2E 7J5 Tel: (613) 226-7381 Fax: (613) 226-6344

0 NO.	REVISIONS	DATE	INITIAL	OTTAWA, Title:
NO.	REVISIONS	DATE	INITIAL	

FINANCIAL EASTERN STAR GROUP PHASE II - ENVIRONMENTAL SITE ASSESSMENT UPDATE

1545 BANK STREET

CONTAMINANT DISTRIBUTION DIAGRAM

Scale:		Date:
	N.T.S.	09/2018
Drawn by:		Report No.:
	RCG	PE4330-2
Checked by:		Dwg. No.:
	KM	PE4330-9
Approved by:		FL433U-3

ONTARIO

Revision No.:

APPENDIX 1

SAMPLING AND ANALYSIS PLAN
SOIL PROFILE AND TEST DATA SHEETS
SYMBOLS AND TERMS
LABORATORY CERTIFICATES OF ANALYSIS

Geotechnical Engineering

Environmental Engineering

Hydrogeology

Geological Engineering

Materials Testing

Building Science

Archaeological Services

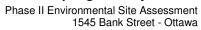
patersongroup

Sampling & Analysis Plan

Phase II Environmental Site Assessment 1545 Bank Street Ottawa, Ontario

Prepared For

Financial Eastern Star Group


July 2018

Report: PE4330-SAP

Paterson Group Inc.

Consulting Engineers 154 Colonnade Road South Ottawa (Nepean), Ontario Canada K2E 7J5

Tel: (613) 226-7381 Fax: (613) 226-6344 www.patersongroup.ca

Table of Contents

1.0	SAMPLING PROGRAM	1
	ANALYTICAL TESTING PROGRAM	
	STANDARD OPERATING PROCEDURES	
	3.1 Environmental Drilling Procedure	
	3.2 Monitoring Well Installation Procedure	
	3.3 Monitoring Well Sampling Procedure	
4.0	QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)	
5.0	DATA QUALITY OBJECTIVES	
6.0	PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN	10

1.0 SAMPLING PROGRAM

Paterson Group Inc. (Paterson) was commissioned by Financial Eastern Star Group to conduct a Phase II Environmental Site Assessment (ESA) at 1545 Bank Street, in the City of Ottawa, Ontario. Based on the findings and recommendations of previous investigations (2011/2012 and 2015) and a more recent Phase I ESA (2018) completed by Paterson for the subject property, a subsurface investigation program, consisting of borehole drilling, was developed.

Borehole	Location & Rationale	Proposed Depth & Rationale
BH9	Place borehole within footprint of former dry cleaners.	Core into bedrock to an approximate depth of 6mbgs for monitoring well installation, to address potential groundwater impacts associated with former automotive service garage.
BH10	Place borehole within footprint of former garage bays.	Core into bedrock to at least 6mbgs for monitoring well installation, to address potential groundwater impacts associated with the former dry cleaner.

At each borehole, split-spoon samples of overburden soils will be obtained at 0.76 m (2'6") intervals until practical refusal to augering. All soil samples will be retained, and samples will be selected for submission following a preliminary screening analysis.

Following borehole drilling, monitoring wells will be installed in selected boreholes (as above) for the measurement of water levels and the collection of groundwater samples. Borehole locations are shown on the Test Hole Location Plan appended to the main report.

Report: PE4330-SAP

2.0 ANALYTICAL TESTING PROGRAM

The analytical testing program for soil at the subject site is based on the following general considerations: ☐ At least one sample from each borehole should be submitted, in order to delineate the horizontal extent of contamination across the site. At least one sample from each stratigraphic unit should be submitted, in order to delineate the vertical extent of contamination at the site. ☐ In boreholes where there is visual or olfactory evidence of contamination, or where organic vapour meter or photoionization detector readings indicate the presence of contamination, the 'worst-case' sample from each borehole should be submitted for comparison with MOECC site condition standards. In boreholes with evidence of contamination as described above, a sample should be submitted from the stratigraphic unit below the 'worst-case' sample to determine whether the contaminant(s) have migrated downward. ☐ Parameters analyzed should be consistent with the Contaminants of Potential Concern identified in the Phase I ESA. The analytical testing program for groundwater at the subject site is based on the following general considerations: ☐ Groundwater monitoring wells should be installed in all boreholes with visual or olfactory evidence of soil contamination, in stratigraphic units where soil contamination was encountered, where those stratigraphic units are at or below the water table (i.e. a water sample can be obtained). Groundwater monitoring well screens should straddle the water table at sites where the contaminants of concern are suspected to be LNAPLs. At least one groundwater monitoring well should be installed in a stratigraphic unit below the suspected contamination, where said stratigraphic unit is waterbearing. ☐ Parameters analyzed should be consistent with the Contaminants of Concern identified in the Phase I ESA and with the contaminants identified in the soil samples.

Report: PE4330-SAP

3.0 STANDARD OPERATING PROCEDURES

3.1 Environmental Drilling Procedure

Purpose

The purpose of environmental boreholes is to identify and/or delineate contamination within the soil and/or to install groundwater monitoring wells in order to identify contamination within the groundwater.

Equipment

The following is a list of equipment that is in addition to regular drilling equipment stated in the geotechnical drilling SOP:

J	glass soil sample jars	
J	two buckets	
J	cleaning brush (toilet brush works well)	
	dish detergent	
J	methyl hydrate	
	water (if not available on site - water jugs available in trailer)	
	latex or nitrile gloves (depending on suspected contaminant)	
J	RKI Eagle organic vapour meter or MiniRae photoionization detection	tor
	(depending on contamination suspected)	

Determining Borehole Locations

If conditions on site are not as suspected, and planned borehole locations cannot be drilled, **call the office to discuss**. Alternative borehole locations will be determined in conversation with the field technician and supervising engineer.

After drilling is completed a plan with the borehole locations must be provided. Distances and orientations of boreholes with respect to site features (buildings, roadways, etc.) must be provided. Distances should be measured using a measuring tape or wheel rather than paced off. Ground surface elevations at each borehole should be surveyed relative to a fire hydrant located near the northwest corner of the Phase II Property, with geodetic elevation of 87.426m above sea level (asl).

Report: PE4330-SAP

Drilling Procedure

_	otechnical boreholes (see SOP for drilling and sampling) with a few exceptions follows:
o o o o o	Continuous split spoon samples (every 0.6 m or 2') or semi-continuous (every 0.76 m or 2'6") are required. Make sure samples are well sealed in plastic bags with no holes prior to screening and are kept cool but unfrozen. If sampling for VOCs, BTEX, or PHCs F1, a soil core from each soil sample which may be analyzed must be taken and placed in the laboratory-provided methanol vial. Note all and any odours or discolouration of samples. Split spoon samplers must be washed between samples. If obvious contamination is encountered, continue sampling until vertical extent of contamination is delineated. As a general rule, environmental boreholes should be deep enough to intercept the groundwater table (unless this is impossible/impractical - call project manager to discuss). If at all possible, soil samples should be submitted to a preliminary screening procedure on site, either using a RKI Eagle, PID, etc. depending on type of suspected contamination.
Sp	oon Washing Procedure
	sampling equipment (spilt spoons, etc.) must be washed between samples in der to prevent cross contamination of soil samples.
	Obtain two buckets of water (preferably hot if available) Add a small amount of dish soap to one bucket Scrub spoons with brush in soapy water, inside and out, including tip Rinse in clean water Apply a small amount of methyl hydrate to the inside of the spoon. (A spray bottle or water bottle with a small hole in the cap works well) Allow to dry (takes seconds) Rinse with distilled water, a spray bottle works well.

The actual drilling procedure for environmental boreholes is the same as

Report: PE4330-SAP

July 2018 Page 4

especially important when dealing with suspected VOCs.

The methyl hydrate eliminates any soap residue that may be on the spoon, and is

Screening Procedure

The RKI Eagle is used to screen most soil samples, particularly where petroleum hydrocarbon contamination is suspected. The MiniRae is used when VOCs are suspected, however it also can be useful for detecting petroleum. These tools are for screening purposes only and cannot be used in place of laboratory testing. Vapour results obtained from the RKI Eagle and the PID are relative and must be interpreted.

Screening equipment should be calibrated on an approximately monthly basis, more frequently if heavily used.

Samples should be brought to room temperature; this is specifically important
in colder weather. Soil must not be frozen.
Turn instrument on and allow to come to zero - calibrate if necessary
If using RKI Eagle, ensure instrument is in methane elimination mode unless
otherwise directed.
Ensure measurement units are ppm (parts per million) initially. RKI Eagle will
automatically switch to %LEL (lower explosive limit) if higher concentrations
are encountered.
Break up large lumps of soil in the sample bag, taking care not to puncture bag.
Insert probe into soil bag, creating a seal with your hand around the opening.
Gently manipulate soil in bag while observing instrument readings.
Record the highest value obtained in the first 15 to 25 seconds
Make sure to indicate scale (ppm or LEL); also note which instrument was used
(RKI Eagle 1 or 2, or MiniRae).
Jar samples and refrigerate as per Sampling and Analysis Plan.

Report: PE4330-SAP

3.2 Monitoring Well Installation Procedure

Eq	uipment
	5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC slotted well screen (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) 5' x 2" [1.52 m x 50 mm] threaded sections of Schedule 40 PVC riser pipe (5' x 1 1/4" [1.52 m x 32 mm] if installing in cored hole in bedrock) Threaded end-cap Slip-cap or J-plug Asphalt cold patch or concrete Silica Sand Bentonite chips (Holeplug) Steel flushmount casing
Pr	ocedure
	Drill borehole to required depth, using drilling and sampling procedures
	described above.
	If borehole is deeper than required monitoring well, backfill with bentonite chips to required depth. This should only be done on wells where contamination is not suspected, in order to prevent downward migration of contamination.
	Only one monitoring well should be installed per borehole.
	Monitoring wells should not be screened across more than one stratigraphic unit to prevent potential migration of contaminants between units.
	Where LNAPLs are the suspected contaminants of concern, monitoring wells should be screened straddling the water table in order to capture any free product floating on top of the water table.
	Thread the end cap onto a section of screen. Thread second section of screen if required. Thread risers onto screen. Lower into borehole to required depth. Ensure slip-cap or J-plug is inserted to prevent backfill materials entering well.
	As drillers remove augers, backfill borehole annulus with silica sand until the
	level of sand is approximately 0.3 m above the top of the screen.
	Backfill with holeplug until at least 0.3 m of holeplug is present above the top
_	of the silica sand.
	Backfill remainder of borehole with holeplug or with auger cuttings (if
_	contamination is not suspected). Install flushmount casing. Seal space between flushmount and borehole
	motal habilihount casing. Seal space between habilihount and bottehole

Report: PE4330-SAP

surface.

July 2018 Page 6

annulus with concrete, cold patch, or holeplug to match surrounding ground

3.3 Monitoring Well Sampling Procedure

Eq	uipment
	Water level metre or interface probe on hydrocarbon/LNAPL sites Spray bottles containing water and methanol to clean water level tape or interface probe Peristaltic pump Polyethylene tubing for peristaltic pump Flexible tubing for peristaltic pump Latex or nitrile gloves (depending on suspected contaminant) Allen keys and/or 9/16" socket wrench to remove well caps Graduated bucket with volume measurements pH/Temperature/Conductivity combo pen Laboratory-supplied sample bottles
Sa	mpling Procedure
	Locate well and use socket wrench or Allan key to open metal flush mount protector cap. Remove plastic well cap.
	Measure water level, with respect to existing ground surface, using water level meter or interface probe. If using interface probe on suspected NAPL site, measure the thickness of free product. Measure total depth of well.
	Clean water level tape or interface probe using methanol and water. Change gloves between wells.
	Calculate volume of standing water within well and record. Insert polyethylene tubing into well and attach to peristaltic pump. Turn on peristaltic pump and purge into graduated bucket. Purge at least three well volumes of water from the well. Measure and record field chemistry. Continue to purge, measuring field chemistry after every well volume purged, until appearance or field chemistry stabilizes.
	Note appearance of purge water, including colour, opacity (clear, cloudy, silty), sheen, presence of LNAPL, and odour. Note any other unusual features (particulate matter, effervescence (bubbling) of dissolved gas, etc.).
	Fill required sample bottles. If sampling for metals, attach 75-micron filter to discharge tube and filter metals sample. If sampling for VOCs, use low flow rate to ensure continuous stream of non-turbulent flow into sample bottles. Ensure no headspace is present in VOC vials.
	Replace well cap and flushmount casing cap.

Report: PE4330-SAP

4.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC)

Th	e QA/QC program for this Phase II ESA is as follows:
	All non-dedicated sampling equipment (split spoons) will be decontaminated according to the SOPs listed above.
	All groundwater sampling equipment is dedicated (polyethylene and flexible peristaltic tubing is replaced for each well).
	Where groundwater samples are to be analyzed for VOCs, one laboratory-provided trip blank will be submitted for analysis with every laboratory submission.
	Approximately one (1) field duplicate will be submitted for every ten (10) samples submitted for laboratory analysis. A minimum of one (1) field duplicate per project will be submitted. Field duplicates will be submitted for soil and groundwater samples
	Where combo pens are used to measure field chemistry, they will be calibrated on an approximately monthly basis, according to frequency of use.

Report: PE4330-SAP

1545 Bank Street - Ottawa

5.0 DATA QUALITY OBJECTIVES

The purpose of setting data quality objectives (DQOs) is to ensure that the level of uncertainty in data collected during the Phase II ESA is low enough that decision-making is not affected, and that the overall objectives of the investigation are met.

The quality of data is assessed by comparing field duplicates with original samples. If the relative percent difference (RPD) between the duplicate and the sample is within 20%, the data are considered to be of sufficient quality so as not to affect decision-making. The RPD is calculated as follows:

$$RPD = \left| \frac{x_1 - x_2}{(x_1 + x_2)/2} \right| \times 100\%$$

Where x_1 is the concentration of a given parameter in an original sample and x_2 is the concentration of that same parameter in the field duplicate sample.

For the purpose of calculating the RPD, it is desirable to select field duplicates from samples for which parameters are present in concentrations above laboratory detection limits, i.e. samples which are expected to be contaminated. If parameters are below laboratory detection limits for selected samples or duplicates, the RPD may be calculated using a concentration equal to one half (0.5 x) the laboratory detection limit.

It is also important to consider data quality in the overall context of the project. For example, if the DQOs are not met for a given sample, yet the concentrations of contaminants in both the sample and the duplicate exceed the MOE site remediation standards by a large margin, the decision-making usefulness of the sample may not be considered to be impaired. The proximity of other samples which meet the DQOs must also be considered in developing the Phase II Conceptual Site Model; often there are enough data available to produce a reliable Phase II Conceptual Site Model even if DQOs are not met for certain individual samples.

These considerations are discussed in the body of the report.

Report: PE4330-SAP

6.0 PHYSICAL IMPEDIMENTS TO SAMPLING & ANALYSIS PLAN

Ph	ysical impediments to the Sampling and Analysis plan may include:
	The location of underground utilities
	Poor recovery of split-spoon soil samples
	Insufficient groundwater volume for groundwater samples
	Breakage of sampling containers following sampling or while in transit to the laboratory
	Elevated detection limits due to matrix interference (generally related to soil colour or presence of organic material)
	Elevated detection limits due to high concentrations of certain parameters, necessitating dilution of samples in laboratory
	Drill rig breakdowns
	Winter conditions
	Other site-specific impediments
Sit	e-specific impediments to the Sampling and Analysis plan are discussed in the

body of the Phase II ESA report.

Report: PE4330-SAP

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Proposed Retail / Condo Building - 1545 Bank Street Ottawa, Ontario

DATUM

TBM - Top spindle of fire hydrant located near the northwest corner of subject

FILE NO.

PE2422

REMARKS

property. Approximate geodetic elevation = 87.426m.

BORINGS BY CME 55 Power Auger				D	ATE :	Septembe	er 22, 201	11	HOL	E NO.	В	H 2	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo I			Detec Rdg. (pp		eter
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lowe					Piezometer
GROUND SURFACE	0,	_		R	Z	0-	-86.95	20	40	60	8	0	
		SS	1	75	18		4	A					
FILL: Brown silty sand with gravel													
FILL. DIOWITSHIY SANG WILLI GLAVE!		ss	2	83	7	1-	-85.95	A :					
		SS	3	17	3			V.;;					
2.21		<u></u>				2-	-84.95						
GLACIAL TILL: Compact, brown silty sand with gravel, cobbles and boulders		SS	4	33	25			Δ					
Inferred shale BEDROCK 2.97 End of Borehole	·	X ss	5	100	50+								
Practical refusal to augering @ 2.97m depth													
(GWL @ 2.11m-Sept. 30/11)													
								100 RKI E ▲ Full Ga			. (ppn	n)	500

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Proposed Retail / Condo Building - 1545 Bank Street Ottawa, Ontario

DATUM

REMARKS

TBM - Top spindle of fire hydrant located near the northwest corner of subject property. Approximate geodetic elevation = 87.426m.

FILE NO.

PE2422

HOLF NO

BORINGS BY CME 55 Power Auger					ATE	Septembe	er 22, 20	11	HOL	E NO.	BH 3	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH (m)	ELEV. (m)	Photo I			etector g. (ppm)	neter
	STRATA	TYPE NUMBER * RECOVERY N VALUE OF ROD		()			er Exp	Piezometer				
GROUND SURFACE	0,			22	Z	0-	87.44	20	40	60	80	
25mm Asphaltic concrete over silty sand with gravel FILL		AU	1					Δ				
		П										
		\mathbb{I}										冒
		ss	2	83	10	1-	86.44	4::::				
Very stiff, brown SILTY CLAY , trace gravel												
		SS	3	100	13			A				
2.21						2-	85.44					
nferred shale BEDROCK 2.36 End of Borehole		∑ ss	4	100	50+			A				
Practical refusal to augering @ 2.36m depth												
								100	200	300	400	500
								RKI	Eagle	Rdg. (ppm) ethane Elim	

patersongroup

Consulting Engineers

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

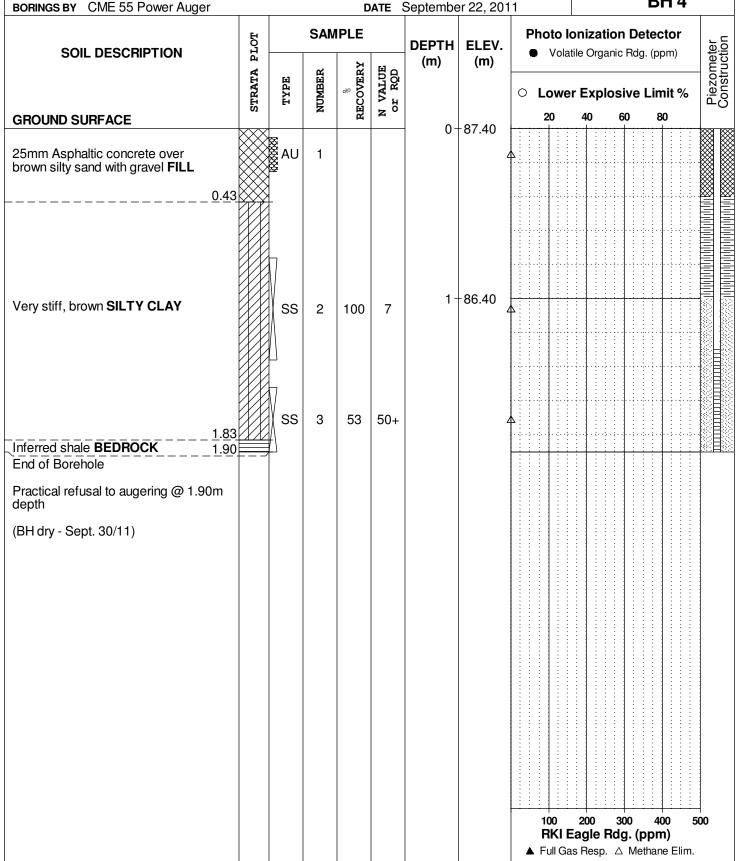
Phase II - Environmental Site Assessment Proposed Retail / Condo Building - 1545 Bank Street Ottawa, Ontario

DATUM

TBM - Top spindle of fire hydrant located near the northwest corner of subject

FILE NO.

PE2422


BH 4

property. Approximate geodetic elevation = 87.426m.

HOLE NO.

REMARKS

DATE September 22, 2011

patersongroup

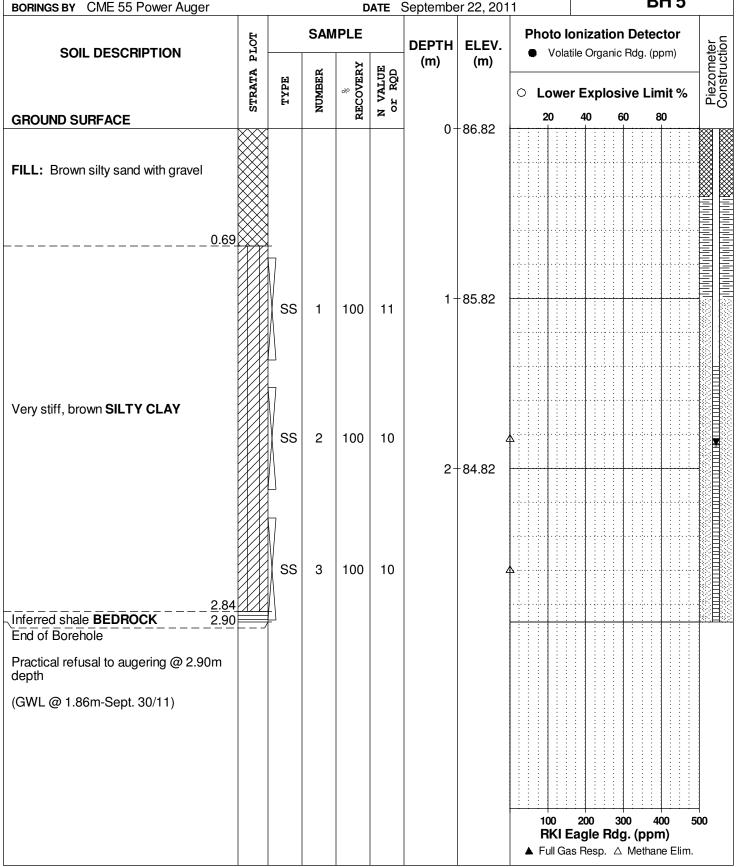
154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment Proposed Retail / Condo Building - 1545 Bank Street Ottawa, Ontario

DATUM

TBM - Top spindle of fire hydrant located near the northwest corner of subject property. Approximate geodetic elevation = 87.426m.


FILE NO.

HOLE NO.

PE2422

REMARKS

BH 5

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II Environmental Site Assessment 1545 Bank Street Ottawa, Ontario

DATUM

TBM - Top spindle of fire hydrant located near the northwest corner of subject

FILE NO.

PE2422

REMARKS

property. Approximate geodetic elevation = 87.426m.

BORINGS BY CME 55 Power Auger				0	OATE	Novembe	er 20, 201	15	HOL	E NO.	В	H 6	
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.	Photo I	oniza tile Org				Well
	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	Lower Explosive Limit %				Monitoring Well Construction	
GROUND SURFACE	0,		-	22	z °	0-	-87.28	20	40	60	8	30	≥
FILL: Brown silty sand and gravel	6	AU	1				07.20						
Very stiff, brown SILTY CLAY , trace sand		ss	2	100	7	1 -	-86.28	•					
2.1.	3	ss	3	100	12	2-	-85.28						
BEDROCK: Weathered shale		∑ SS	4	57	50+		04.00						
3.1	5	⊠ SS	5	50	50+	3-	84.28						
		RC	1	100	90	4-	-83.28						շուրկուիր իրերիր իր ★★ «Խեսների անգանարի անատնանան անարանան անարանան անարանանան անարարանան անարանան անարանան անարանան անարանա
BEDROCK: Grey shaley limestone		RC	2	96	66	5-	-82.28						
		_				6-	-81.28						
		RC	3	100	82	7-	-80.28						
8.09	8	RC	4	100	71	8-	-79.28						
(GWL @ 1.99m-Nov. 27, 2015)													
(GWL @ 4.60m - Aug. 2, 2018)													
(STE & F.SSIII Flug. 2, 2010)								100 RKI E ▲ Full Ga			. (ppr	n)	⊣ 6 00

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 1545 Bank Street Ottawa, Ontario

DATUM

TBM - Top spindle of fire hydrant located near the northwest corner of subject property. Approximate geodetic elevation = 87.426m.

FILE NO.

HOLE NO.

PE2422

REMARKS

BORINGS BY CME 55 Power Auger		Γ			ATE	Novembe	er 20, 20	15 BH 7	
SOIL DESCRIPTION	PLOT		SAN	/IPLE	ı	DEPTH	ELEV.	Photo Ionization Detector Volatile Organic Rdg. (ppm)	Well
		TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)	O Lower Explosive Limit %	Monitoring Well Construction
GROUND SURFACE						0-	87.58	20 40 00 00	
FILL: Brown silty sand and gravel		AU	1					•	
FILE: Drown silty sand and graver		ss	2	50	39	1-	86.58		
GLACIAL TILL: Brown silty sand	[^^^^^	ss	3	12	18	2-	85.58		_
with gravel 2.49		∑ ss _	4	100	50+	3-	84.58		
BEDROCK: Grey shaley limestone		RC	1	100	88	4-	83.58		
5.05 End of Borehole		RC	2	100	100	5-	82.58		
(GWL @ 2.19m-Nov. 27, 2015)									
								100 200 300 400 500 RKI Eagle Rdg. (ppm) ▲ Full Gas Resp. △ Methane Elim.	1

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 1545 Bank Street Ottawa, Ontario

DATUM

REMARKS

TBM - Top spindle of fire hydrant located near the northwest corner of subject property. Approximate geodetic elevation = 87.426m.

FILE NO.

HOLE NO.

PE2422

POPINGS BY CME 55 Power Auger

BH8

BORINGS BY CME 55 Power Auger				D	ATE	Novembe	er 20, 201	15	BH 8	
SOIL DESCRIPTION	PLOT		SAN	IPLE	ı	DEPTH	ELEV.	1	onization Detector tile Organic Rdg. (ppm)	Well
GROUND SURFACE	STRATA 1	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)		er Explosive Limit %	Monitoring Well Construction
FILL: Crushed stone	.76	& AU	1			0-	-86.93	•		
		ss	2	50	11	1-	85.93			յն ուներ անդան անդան անդան անդանում անդան ան ***
FILL: Brown silt and sand		ss	3	67	14	2-	-84.93			
2	.67	∑ SS × SS	4 5	67 100	50+ 50+	3-	-83.93			ականականիր ին իրակիր հիմին իրակիր հիմին իրակիր հիմին իրակիր հիմին իրակիր հիմին հիմին հիմին հիմին հիմին հիմին հ
BEDROCK: Grey shaley limestone		RC	1	100	90	4-	-82.93			
5 End of Borehole	.23	RC	2	100	46	5-	-81.93			
(GWL @ 1.19m-Nov. 27, 2015)								100 RKI I	200 300 400 5 Eagle Rdg. (ppm)	

SOIL PROFILE AND TEST DATA

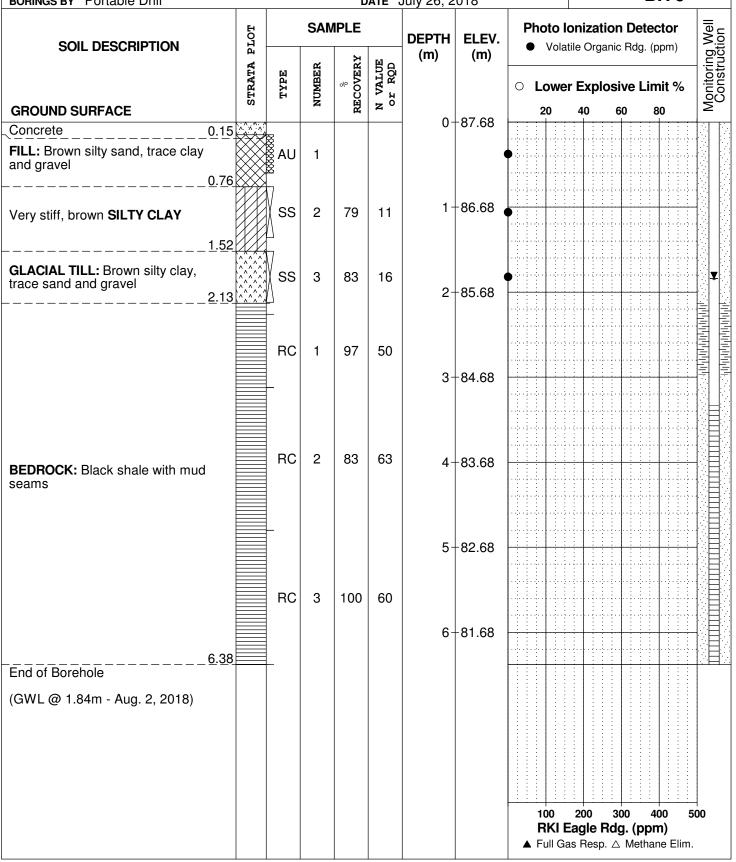
Phase II - Environmental Site Assessment 1545 Bank Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

BH - Top spindle of fire hydrant located near the northwest corner of subject site. Geodetic elevation = 87.426m.

FILE NO. PE4330


REMARKS

BORINGS BY Portable Drill

DATE July 26, 2018

HOLE NO.

BH 9

SOIL PROFILE AND TEST DATA

Phase II - Environmental Site Assessment 1545 Bank Street Ottawa, Ontario

154 Colonnade Road South, Ottawa, Ontario K2E 7J5

DATUM

BH - Top spindle of fire hydrant located near the northwest corner of subject site. Geodetic elevation = $87.426 m. \,$

FILE NO. PE4330

HOLE NO.

REMARKS

BORINGS BY Portable Drill				D	ATE .	July 26, 2	018		HOLE	: NO.	BH1	0
SOIL DESCRIPTION	PLOT		SAN	IPLE		DEPTH	ELEV.				Detector Rdg. (ppm)	Well
GROUND SURFACE	STRATA P	TYPE	NUMBER	% RECOVERY	N VALUE or RQD	(m)	(m)				e Limit %	Monitoring Well Construction
Concrete 0.15	\^^^^					0-	87.58	20	+0			
FILL: Brown silty sand, trace clay and gravel		AU	1				(
Very stiff, brown SILTY CLAY		ss	2	71	11	1-	86.58	•				
1.83 GLACIAL TILL: Brown silty clay, 2.03		ss	3	90	11	2-	-85.58	•				
		RC -	1	100	60	3-	-84.58					
BEDROCK: Black shale with mud seams		RC	2	97	55	4-	-83.58					
		RC	3	94	90	5-	-82.58					
End of Borehole (GWL @ 1.93m - Aug. 2, 2018)		_				6-	-81.58					
(400 (ppm) Methane El	500

SYMBOLS AND TERMS

SOIL DESCRIPTION

Behavioural properties, such as structure and strength, take precedence over particle gradation in describing soils. Terminology describing soil structure are as follows:

Desiccated	-	having visible signs of weathering by oxidation of clay minerals, shrinkage cracks, etc.
Fissured	-	having cracks, and hence a blocky structure.
Varved	-	composed of regular alternating layers of silt and clay.
Stratified	-	composed of alternating layers of different soil types, e.g. silt and sand or silt and clay.
Well-Graded	-	Having wide range in grain sizes and substantial amounts of all intermediate particle sizes (see Grain Size Distribution).
Uniformly-Graded	-	Predominantly of one grain size (see Grain Size Distribution).

The standard terminology to describe the strength of cohesionless soils is the relative density, usually inferred from the results of the Standard Penetration Test (SPT) 'N' value. The SPT N value is the number of blows of a 63.5 kg hammer, falling 760 mm, required to drive a 51 mm O.D. split spoon sampler 300 mm into the soil after an initial penetration of 150 mm.

Relative Density	'N' Value	Relative Density %					
Very Loose	<4	<15					
Loose	4-10	15-35					
Compact	10-30	35-65					
Dense	30-50	65-85					
Very Dense	>50	>85					

The standard terminology to describe the strength of cohesive soils is the consistency, which is based on the undisturbed undrained shear strength as measured by the in situ or laboratory vane tests, penetrometer tests, unconfined compression tests, or occasionally by Standard Penetration Tests.

Consistency	Undrained Shear Strength (kPa)	'N' Value			
Very Soft	<12	<2			
Soft	12-25	2-4			
Firm	25-50	4-8			
Stiff	50-100	8-15			
Very Stiff	100-200	15-30			
Hard	>200	>30			

SYMBOLS AND TERMS (continued)

SOIL DESCRIPTION (continued)

Cohesive soils can also be classified according to their "sensitivity". The sensitivity is the ratio between the undisturbed undrained shear strength and the remoulded undrained shear strength of the soil.

Terminology used for describing soil strata based upon texture, or the proportion of individual particle sizes present is provided on the Textural Soil Classification Chart at the end of this information package.

ROCK DESCRIPTION

The structural description of the bedrock mass is based on the Rock Quality Designation (RQD).

The RQD classification is based on a modified core recovery percentage in which all pieces of sound core over 100 mm long are counted as recovery. The smaller pieces are considered to be a result of closely-spaced discontinuities (resulting from shearing, jointing, faulting, or weathering) in the rock mass and are not counted. RQD is ideally determined from NXL size core. However, it can be used on smaller core sizes, such as BX, if the bulk of the fractures caused by drilling stresses (called "mechanical breaks") are easily distinguishable from the normal in situ fractures.

RQD %	ROCK QUALITY
90-100	Excellent, intact, very sound
75-90	Good, massive, moderately jointed or sound
50-75	Fair, blocky and seamy, fractured
25-50	Poor, shattered and very seamy or blocky, severely fractured
0-25	Very poor, crushed, very severely fractured

SAMPLE TYPES

SS	-	Split spoon sample (obtained in conjunction with the performing of the Standard Penetration Test (SPT))
TW	-	Thin wall tube or Shelby tube
PS	-	Piston sample
AU	-	Auger sample or bulk sample
WS	-	Wash sample
RC	-	Rock core sample (Core bit size AXT, BXL, etc.). Rock core samples are obtained with the use of standard diamond drilling bits.

SYMBOLS AND TERMS (continued)

GRAIN SIZE DISTRIBUTION

MC% - Natural moisture content or water content of sample, %

Liquid Limit, % (water content above which soil behaves as a liquid)
 PL - Plastic limit, % (water content above which soil behaves plastically)

PI - Plasticity index, % (difference between LL and PL)

Dxx - Grain size which xx% of the soil, by weight, is of finer grain sizes

These grain size descriptions are not used below 0.075 mm grain size

D10 - Grain size at which 10% of the soil is finer (effective grain size)

D60 - Grain size at which 60% of the soil is finer

Cc - Concavity coefficient = $(D30)^2 / (D10 \times D60)$

Cu - Uniformity coefficient = D60 / D10

Cc and Cu are used to assess the grading of sands and gravels:

Well-graded gravels have: 1 < Cc < 3 and Cu > 4 Well-graded sands have: 1 < Cc < 3 and Cu > 6

Sands and gravels not meeting the above requirements are poorly-graded or uniformly-graded.

Cc and Cu are not applicable for the description of soils with more than 10% silt and clay

(more than 10% finer than 0.075 mm or the #200 sieve)

CONSOLIDATION TEST

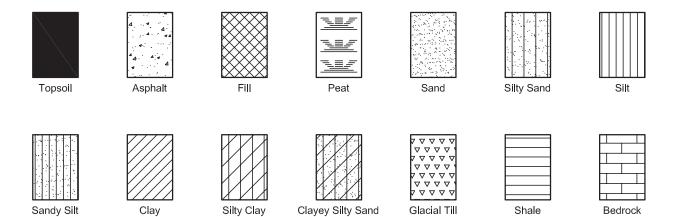
p'_o - Present effective overburden pressure at sample depth

p'c - Preconsolidation pressure of (maximum past pressure on) sample

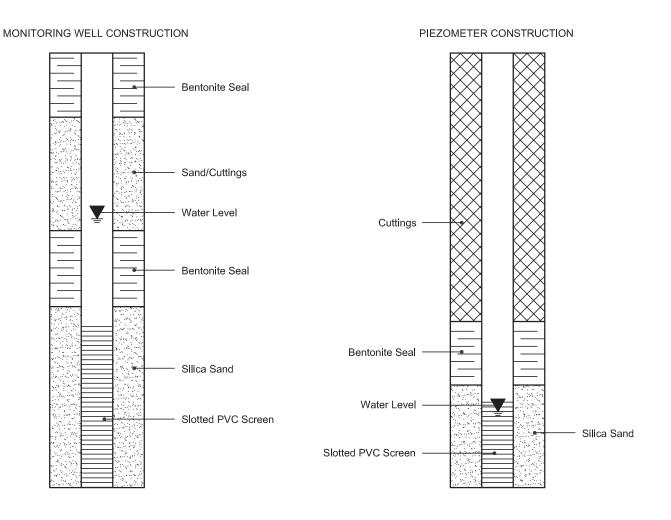
Ccr - Recompression index (in effect at pressures below p'c)
Cc - Compression index (in effect at pressures above p'c)

OC Ratio Overconsolidaton ratio = p'_c/p'_o

Void Ratio Initial sample void ratio = volume of voids / volume of solids


Wo - Initial water content (at start of consolidation test)

PERMEABILITY TEST


Coefficient of permeability or hydraulic conductivity is a measure of the ability of water to flow through the sample. The value of k is measured at a specified unit weight for (remoulded) cohesionless soil samples, because its value will vary with the unit weight or density of the sample during the test.

SYMBOLS AND TERMS (continued)

STRATA PLOT

MONITORING WELL AND PIEZOMETER CONSTRUCTION

TRUSTED.
RESPONSIVE.
RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

Certificate of Analysis

OTTAWA

NIAGARA FALLS

MISSISSAUGA

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Phone: (613) 226-7381
Nepean, ON K2E 7T7 Fax: (613) 226-6344

Attn: Eric Leveque

 Client PO: 11966
 Report Date: 29-Sep-2011

 Project: PE2422
 Order Date: 23-Sep-2011

 Custody: 88882
 Order #: 1139272

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1139272-01
 BH1-SS5

 1139272-02
 BH5-SS2

Approved By:

Mark Froto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 11966 Project Description: PE2422 Report Date: 29-Sep-2011 Order Date:23-Sep-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date A	nalysis Date
BTEX	EPA 8260 - P&T GC-MS	26-Sep-11	27-Sep-11
CCME PHC F1	CWS Tier 1 - P&T GC-FID	26-Sep-11	27-Sep-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	26-Sep-11	27-Sep-11
Solids, %	Gravimetric, calculation	27-Sep-11	27-Sep-11

Certificate of Analysis

Client: Paterson Group Consulting Engineers Client PO: 11966

Report Date: 29-Sep-2011 Order Date:23-Sep-2011

one in a coroon or oup oc	mounting Engineere			0.40.	24.0.20 Cop 20.
Client PO: 11966		Project Descript			
	Client ID:	BH1-SS5	BH5-SS2	-	-
	Sample Date:	22-Sep-11	22-Sep-11	-	-
	Sample ID:	1139272-01	1139272-02	-	-
	MDL/Units	Soil	Soil	-	-
Physical Characteristics					
% Solids	0.1 % by Wt.	87.5	78.2	-	-
Volatiles	-		•		-
Benzene	0.02 ug/g dry	0.25	<0.02	-	-
Ethylbenzene	0.05 ug/g dry	1.15	<0.05	-	-
Toluene	0.05 ug/g dry	1.13	<0.05	-	-
m,p-Xylenes	0.05 ug/g dry	5.45	<0.05	-	-
o-Xylene	0.05 ug/g dry	2.03	<0.05	-	-
Xylenes, total	0.05 ug/g dry	7.48	<0.05	-	-
Toluene-d8	Surrogate	94.0%	95.1%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	10 ug/g dry	30	<10	-	-
F2 PHCs (C10-C16)	10 ug/g dry	20	<10	-	-
F3 PHCs (C16-C34)	10 ug/g dry	<10	<10	-	-
F4 PHCs (C34-C50)	10 ug/g dry	<10	<10	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 11966 Project Description: PE2422 Report Date: 29-Sep-2011

Order Date:23-Sep-2011

Method Quality Contro	ol: Blank								
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g						
F2 PHCs (C10-C16)	ND	10	ug/g						
F3 PHCs (C16-C34)	ND	10	ug/g						
F4 PHCs (C34-C50)	ND	10	ug/g						
Volatiles									
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	7.54		ug/g		94.2	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Method Quality Control: Duplicate

Client PO: 11966 Project Description: PE2422 Report Date: 29-Sep-2011 Order Date:23-Sep-2011

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	10	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	10	ug/g dry	ND				30	
F3 PHCs (C16-C34)	24	10	ug/g dry	25			1.5	30	
F4 PHCs (C34-C50)	ND	10	ug/g dry	ND				30	
Physical Characteristics									
% Solids	89.3	0.1	% by Wt.	93.5			4.7	25	
Volatiles									
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	8.77		ug/g dry	ND	93.7	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Report Date: 29-Sep-2011 Order Date:23-Sep-2011

Client PO: 11966 Project Description: PE2422 Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	186	10	ug/g	ND	93.0	80-120			
F2 PHCs (C10-C16)	159	10	ug/g	ND	88.1	60-140			
F3 PHCs (C16-C34)	397	10	ug/g	ND	88.1	60-140			
F4 PHCs (C34-C50)	220	10	ug/g	ND	81.5	60-140			
Volatiles									
Benzene	0.707	0.02	ug/g	ND	64.8	50-140			
Ethylbenzene	1.85	0.05	ug/g	ND	71.5	50-140			
Toluene	9.30	0.05	ug/g	ND	73.7	50-140			
m,p-Xylenes	5.67	0.05	ug/g	ND	72.1	50-140			
o-Xylene	2.37	0.05	ug/g	ND	75.0	50-140			
Surrogate: Toluene-d8	8.92		ug/g		95.4	50-140			

Certificate of AnalysisReport Date: 29-Sep-2011Client: Paterson Group Consulting EngineersOrder Date: 23-Sep-2011

Client PO: 11966 Project Description: PE2422

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'.

Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

WWW.PARACELLABS.COM

LABORATORIES LTD.

TRUSTED .
RESPONSIVE .
RELIABLE .

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com Chain of Custody (Lab Use Only)

Nº 88882

OTT	AWA ® KINGSTON ® NIAGARA ® N	ISSISSA	JGA @	SAF	RNIA			www.parace	llabs.com		7 1	P	age	of		
Client !	Name: PATERSON			Project 1	Reference: PIE	2422		Jack.	-		TAT:	_	Regular	-		
Contact	Name: FRIC LIEVEQUE			Quote #							[] 2 Day					
Addres	28 CONCOURSE GATE			PO# 11966							[] 1 Day					
	UNITI			Email A	ddress:		-					[]	Same Da	нy		
Telephone: 226-7381				elei	requee	Paters	iongro	up.ca			Date D	equired:		ő		
	Samples Submitted Under: [] O. Reg. 153/04	Table	O. Re	g 511/09	Table [] P	WQO []CC	ME []Se	ewer Use (Stor	m) []Sewer	Use (S						
Matrix '	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water								*		red An					
Parac	el Order Number:		(1)	STS											П	_
	1139272	Matrix	Air Volume	of Containers	Sample	e Taken	BTEX	4C'S								
	Sample ID/Location Name		Ā	Jo #	Date	Time	Q	DA								
1	131+1-555	5		2	Sept	,	V	1	120	ml	+1	al				7
2	BH5-552	5		2		111	V	-	1		+ vi					/
3										/11.5	7		-		\neg	_
4															\neg	
5																
6															\neg	
7															\neg	
8															\neg	
9																
10															\neg	
Comm	y 1		1 [·	H A	Te (V		7				of Delivery		
elinqui	shed By (Print & Sign): GG SEP 22/11	Receive	d by Driv	er/Depot	ase		ived at Lab:		. The		Verified M	By:		L		
	1	Date/Tir		3/09	111 12:16	Date	Time: ()	19301	01.0	0				23/1	(2	:26
ate/Tin	16:	Tempera		1 1		Tem	perature:	1,4 °C				ied (1 1		MID		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5

Attn: Mark D'Arcy

Client PO: 19057 Project: PE2422 Custody: 106953

Report Date: 27-Nov-2015 Order Date: 23-Nov-2015

Order #: 1548079

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1548079-01
 BH6-SS3

 1548079-02
 BH7-SS4

 1548079-03
 BH8-SS4

Approved By:

Mark Foto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis Report Date: 27-Nov-2015 Client: Paterson Group Consulting Engineers Order Date: 23-Nov-2015 Client PO: 19057

Project Description: PE2422

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
BTEX by P&T GC-MS	EPA 8260 - P&T GC-MS	25-Nov-15	27-Nov-15
PHC F1	CWS Tier 1 - P&T GC-FID	25-Nov-15	27-Nov-15
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	24-Nov-15	26-Nov-15
REG 153: PAHs by GC-MS	EPA 8270 - GC-MS, extraction	25-Nov-15	26-Nov-15
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	25-Nov-15	27-Nov-15
Solids, %	Gravimetric, calculation	24-Nov-15	24-Nov-15

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 19057

Report Date: 27-Nov-2015 Order Date: 23-Nov-2015 **Project Description: PE2422**

_	Client ID: Sample Date: Sample ID:	BH6-SS3 20-Nov-15 1548079-01	BH7-SS4 20-Nov-15 1548079-02	BH8-SS4 20-Nov-15 1548079-03	- - -
	MDL/Units	Soil	Soil	Soil	-
Physical Characteristics	0.4.0/ h10/4		Т	T	1
% Solids	0.1 % by Wt.	73.6	88.3	78.2	-
Volatiles	0.50 ug/g dry	0.50	Ī	1	1
Acetone	0.02 ug/g dry	<0.50	-	-	-
Benzene		<0.02	-	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	-	-	-
Bromoform	0.05 ug/g dry	<0.05	-	-	-
Bromomethane	0.05 ug/g dry	<0.05	-	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	-	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	-	-	-
Chloroform	0.05 ug/g dry	<0.05	-	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	-	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	< 0.05	-	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	-	-	-
1,2-Dichloropropane	0.05 ug/g dry	<0.05	-	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	-	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	-	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	-	-	-
Ethylene dibromide (dibromoetha	0.05 ug/g dry	<0.05	-	-	-
Hexane	0.05 ug/g dry	<0.05	-	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	-	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	-	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	-	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	-	-	-
Styrene	0.05 ug/g dry	<0.05	-	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	-	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	-	-	-

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 19057

Report Date: 27-Nov-2015 Order Date: 23-Nov-2015

Project Description: PE2422

	Client ID:	BH6-SS3	BH7-SS4	BH8-SS4	-		
	Sample Date:	20-Nov-15 1548079-01	20-Nov-15 1548079-02	20-Nov-15 1548079-03	-		
	Sample ID: MDL/Units	Soil	Soil	Soil	-		
Toluene	0.05 ug/g dry	<0.05	-	-	_		
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	_	_	_		
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05		_	_		
	0.05 ug/g dry		-				
Trichloroethylene	0.05 ug/g dry	<0.05	-	-	-		
Trichlorofluoromethane		<0.05	-	-	-		
Vinyl chloride	0.02 ug/g dry	<0.02	-	-	-		
m,p-Xylenes	0.05 ug/g dry	<0.05	-	-	-		
o-Xylene	0.05 ug/g dry	<0.05	-	-	-		
Xylenes, total	0.05 ug/g dry	<0.05	-	-	-		
4-Bromofluorobenzene	Surrogate	106%	-	-	-		
Dibromofluoromethane	Surrogate	104%	-	-	-		
Toluene-d8	Surrogate	114%	-	-	-		
Benzene	0.02 ug/g dry	-	<0.02	<0.02	-		
Ethylbenzene	0.05 ug/g dry	-	<0.05	<0.05	-		
Toluene	0.05 ug/g dry	-	<0.05	<0.05	-		
m,p-Xylenes	0.05 ug/g dry	-	0.18	<0.05	-		
o-Xylene	0.05 ug/g dry	-	<0.05	<0.05	-		
Xylenes, total	0.05 ug/g dry	-	0.23	<0.05	-		
Toluene-d8	Surrogate	-	114%	113%	-		
Hydrocarbons							
F1 PHCs (C6-C10)	7 ug/g dry	<7	9	<7	-		
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	<4	-		
F3 PHCs (C16-C34)	8 ug/g dry	<8	147	<8	-		
F4 PHCs (C34-C50)	6 ug/g dry	<6	119	<6	-		
Semi-Volatiles	•		•	•			
Acenaphthene	0.02 ug/g dry	-	0.04	-	-		
Acenaphthylene	0.02 ug/g dry	-	<0.02	-	-		
Anthracene	0.02 ug/g dry	-	0.04	-	-		
Benzo [a] anthracene	0.02 ug/g dry	-	0.24	-	-		
Benzo [a] pyrene	0.02 ug/g dry	-	0.25	-	-		
Benzo [b] fluoranthene	0.02 ug/g dry	-	0.36	_	-		
Benzo [g,h,i] perylene	0.02 ug/g dry	-	0.19	_	-		
Benzo [k] fluoranthene	0.02 ug/g dry	-	0.29	-	-		
Chrysene	0.02 ug/g dry	<u> </u>	0.29	-	-		
Dibenzo [a,h] anthracene	0.02 ug/g dry			-			
	0.02 ug/g dry	-	0.04		-		
Fluoranthene	0.02 ug/g dry	-	0.54	-	-		
Fluorene	0.02 ug/g ury	-	0.04	-	-		

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 19057

Report Date: 27-Nov-2015 Order Date: 23-Nov-2015 **Project Description: PE2422**

	Client ID:	BH6-SS3	BH7-SS4	BH8-SS4	-
	Sample Date:	20-Nov-15	20-Nov-15	20-Nov-15	-
	Sample ID:	1548079-01	1548079-02	1548079-03	-
	MDL/Units	Soil	Soil	Soil	-
Indeno [1,2,3-cd] pyrene	0.02 ug/g dry	-	0.17	-	-
1-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	-
2-Methylnaphthalene	0.02 ug/g dry	-	<0.02	-	-
Methylnaphthalene (1&2)	0.04 ug/g dry	-	<0.04	-	-
Naphthalene	0.01 ug/g dry	-	0.02	-	-
Phenanthrene	0.02 ug/g dry	-	0.30	-	-
Pyrene	0.02 ug/g dry	-	0.48	-	-
2-Fluorobiphenyl	Surrogate	-	53.6%	-	-
Terphenyl-d14	Surrogate	-	61.9%	-	-

Certificate of Analysis Report Date: 27-Nov-2015 Client: Paterson Group Consulting Engineers Order Date: 23-Nov-2015 Client PO: 19057

Project Description: PE2422

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Semi-Volatiles									
Acenaphthene	ND	0.02	ug/g						
Acenaphthylene	ND	0.02	ug/g						
Anthracene	ND	0.02	ug/g						
Benzo [a] anthracene	ND	0.02	ug/g						
Benzo [a] pyrene	ND	0.02	ug/g						
Benzo [b] fluoranthene	ND	0.02	ug/g						
Benzo [g,h,i] perylene	ND	0.02	ug/g						
Benzo [k] fluoranthene Chrysene	ND ND	0.02 0.02	ug/g						
Dibenzo [a,h] anthracene	ND ND	0.02	ug/g ug/g						
Fluoranthene	ND	0.02	ug/g ug/g						
Fluorene	ND	0.02	ug/g						
Indeno [1,2,3-cd] pyrene	ND	0.02	ug/g						
1-Methylnaphthalene	ND	0.02	ug/g						
2-Methylnaphthalene	ND	0.02	ug/g						
Methylnaphthalene (1&2)	ND	0.04	ug/g						
Naphthalene	ND	0.01	ug/g						
Phenanthrene	ND	0.02	ug/g						
Pyrene	ND	0.02	ug/g		50.0	50.440			
Surrogate: 2-Fluorobiphenyl	0.797		ug/g		59.8	50-140			
Surrogate: Terphenyl-d14	1.06		ug/g		79.5	50-140			
Volatiles									
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND ND	0.05	ug/g						
Bromoform Bromomethane	ND ND	0.05 0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g ug/g						
Chlorobenzene	ND	0.05	ug/g ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene cis-1,2-Dichloroethylene	ND ND	0.05 0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g ug/g						
1.2-Dichloropropane	ND	0.05	ug/g ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride Styrene	ND ND	0.05 0.05	ug/g						
	ND ND	0.05	ug/g ug/g						
1,1,1,2-Tetrachloroethane									

Report Date: 27-Nov-2015

Certificate of Analysis Client: Paterson Group Consulting Engineers

Order Date: 23-Nov-2015 Client PO: 19057 **Project Description: PE2422**

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	8.76		ug/g		109	50-140			
Surrogate: Dibromofluoromethane	8.00		ug/g		100	50-140			
Surrogate: Toluene-d8	9.02		ug/g		113	50-140			
Benzene	ND	0.02	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: Toluene-d8	7.83	-	ug/g		97.9	50-140			

Report Date: 27-Nov-2015

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 23-Nov-2015 Client PO: 19057 **Project Description: PE2422**

Method Quality Control: Dunlicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dry	ND				40	
F2 PHCs (C10-C16)	ND	4	ug/g dry ug/g dry	ND				30	
F3 PHCs (C16-C34)	ND	8	ug/g dry	ND				30	
F4 PHCs (C34-C50)	ND ND	6	ug/g dry ug/g dry	ND				30	
	ND	U	ug/g ury	ND				30	
Physical Characteristics									
% Solids	85.2	0.1	% by Wt.	84.8			0.4	25	
Semi-Volatiles									
Acenaphthene	0.041	0.02	ug/g dry	0.040			1.4	40	
Acenaphthylene	ND	0.02	ug/g dry	ND			0.0	40	
Anthracene	0.036	0.02	ug/g dry	0.035			3.4	40	
Benzo [a] anthracene	0.246	0.02	ug/g dry	0.235			4.5	40	
Benzo [a] pyrene	0.268	0.02	ug/g dry	0.249			7.5	40	
Benzo [b] fluoranthene	0.339	0.02	ug/g dry	0.359			5.5	40	
Benzo [g,h,i] perylene	0.339	0.02	ug/g dry ug/g dry	0.333			6.5	40	
Benzo [k] fluoranthene	0.231	0.02	ug/g dry ug/g dry	0.131			22.2	40	
Chrysene	0.275	0.02	ug/g dry ug/g dry	0.289			5.3	40	
Dibenzo [a,h] anthracene	0.273	0.02	ug/g dry ug/g dry	0.239			12.7	40	
Fluoranthene	0.600	0.02	ug/g dry ug/g dry	0.542			10.3	40	
Fluorene	0.036	0.02	ug/g dry ug/g dry	0.037			1.4	40	
Indeno [1,2,3-cd] pyrene	0.186	0.02	ug/g dry	0.037			7.9	40	
1-Methylnaphthalene	ND	0.02	ug/g dry	ND			0.0	40	
2-Methylnaphthalene	0.023	0.02	ug/g dry ug/g dry	ND			0.0	40	
Naphthalene	0.023	0.02	ug/g dry ug/g dry	0.015			17.8	40	
Phenanthrene	0.313	0.01	ug/g dry ug/g dry	0.302			3.5	40	
Pyrene	0.502	0.02	ug/g dry ug/g dry	0.479			4.6	40	
Surrogate: 2-Fluorobiphenyl	1.00	0.02	ug/g dry ug/g dry	0.479 ND	66.3	50-140	4.0	40	
Surrogate. Z-riuorobiprierryi					59.7				
Surrogate: Terphenyl-d14	0.901		ug/g dry	ND	59.7	50-140			
/olatiles	ND	0.50	, ,	ND				50	
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	

Report Date: 27-Nov-2015

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 23-Nov-2015 Client PO: 19057 **Project Description: PE2422**

Method Quality Control: Duplicate

Analyte		Reporting		Source		%REC		RPD	N 1 .
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	6.41		ug/g dry	ND	109	50-140			
Surrogate: Dibromofluoromethane	6.17		ug/g dry	ND	105	50-140			
Surrogate: Toluene-d8	6.73		ug/g dry	ND	114	50-140			
Benzene	ND	0.02	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: Toluene-d8	6.73		ug/g dry	ND	114	50-140			

Certificate of Analysis Report Date: 27-Nov-2015 Client: Paterson Group Consulting Engineers Order Date: 23-Nov-2015 Client PO: 19057 **Project Description: PE2422**

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	188	7	ug/g	ND	93.9	80-120			
F2 PHCs (C10-C16)	96	4	ug/g	ND	89.7	60-140			
F3 PHCs (C16-C34)	252	8	ug/g	ND	114	60-140			
F4 PHCs (C34-C50)	162	6	ug/g	ND	110	60-140			
Semi-Volatiles									
Acenaphthene	0.322	0.02	ug/g	0.040	149	50-140		C	M-06
Acenaphthylene	0.156	0.02	ug/g	ND	82.4	50-140			
Anthracene	0.259	0.02	ug/g	0.035	119	50-140			
Benzo [a] anthracene	0.604	0.02	ug/g	0.235	196	50-140		C	M-06
Benzo [a] pyrene	0.671	0.02	ug/g	0.249	224	50-140		C	M-06
Benzo [b] fluoranthene	0.877	0.02	ug/g	0.359	275	50-140			M-06
Benzo [g,h,i] perylene	0.562	0.02	ug/g	0.191	197	50-140			M-06
Benzo [k] fluoranthene	0.739	0.02	ug/g	0.289	239	50-140			M-06
Chrysene	0.718	0.02	ug/g ug/g	0.289	227	50-140			M-06
Dibenzo [a,h] anthracene	0.331	0.02	ug/g ug/g	0.036	157	50-140			M-06
Fluoranthene	0.323	0.02	ug/g ug/g	0.542	-116	50-140			M-06
Fluoranthene Fluorene	0.313	0.02		0.037	147	50-140			M-06
Fluorene Indeno [1,2,3-cd] pyrene	0.548	0.02	ug/g	0.037	199	50-140 50-140			M-06
	0.182		ug/g			50-140		C	(IVI-UO
1-Methylnaphthalene		0.02	ug/g	ND	96.6				
2-Methylnaphthalene	0.225	0.02	ug/g	ND 0.045	119	50-140			
Naphthalene	0.209	0.01	ug/g	0.015	103	50-140			
Phenanthrene	1.29	0.02	ug/g	0.302	523	50-140			M-06
Pyrene	1.25	0.02	ug/g	0.479	409	50-140		C	M-06
Surrogate: 2-Fluorobiphenyl	0.881		ug/g		58.4	50-140			
/olatiles									
Acetone	8.33	0.50	ug/g	ND	83.3	50-140			
Benzene	3.47	0.02	ug/g	ND	86.8	60-130			
Bromodichloromethane	3.21	0.05	ug/g	ND	80.3	60-130			
Bromoform	4.24	0.05	ug/g	ND	106	60-130			
Bromomethane	3.41	0.05	ug/g	ND	85.1	50-140			
Carbon Tetrachloride	3.03	0.05	ug/g	ND	75.7	60-130			
Chlorobenzene	3.53	0.05	ug/g	ND	88.2	60-130			
Chloroform	3.50	0.05	ug/g	ND	87.5	60-130			
Dibromochloromethane	3.80	0.05	ug/g	ND	95.0	60-130			
Dichlorodifluoromethane	3.84	0.05	ug/g	ND	96.1	50-140			
1,2-Dichlorobenzene	4.95	0.05	ug/g	ND	124	60-130			
1,3-Dichlorobenzene	4.35	0.05	ug/g	ND	109	60-130			
1,4-Dichlorobenzene	4.16	0.05	ug/g	ND	104	60-130			
1,1-Dichloroethane	3.06	0.05	ug/g	ND	76.6	60-130			
1,2-Dichloroethane	3.32	0.05	ug/g	ND	82.9	60-130			
1,1-Dichloroethylene	3.03	0.05	ug/g	ND	75.8	60-130			
cis-1,2-Dichloroethylene	4.66	0.05	ug/g ug/g	ND	116	60-130			
trans-1,2-Dichloroethylene	3.77	0.05	ug/g ug/g	ND	94.3	60-130			
1,2-Dichloropropane	2.71	0.05	ug/g ug/g	ND	67.9	60-130			
cis-1,3-Dichloropropylene	3.00	0.05		ND	75.1	60-130			
	3.00 2.45		ug/g	ND ND	75.1 61.1	60-130			
trans-1,3-Dichloropropylene		0.05	ug/g						
Ethylbenzene	2.97	0.05	ug/g	ND	74.3	60-130			
Ethylene dibromide (dibromoethane	4.09	0.05	ug/g	ND	102	60-130			
Hexane	3.24	0.05	ug/g	ND	81.0	60-130			
Methyl Ethyl Ketone (2-Butanone)	7.96	0.50	ug/g	ND	79.6	50-140			
Methyl Isobutyl Ketone	8.63	0.50	ug/g	ND	86.3	50-140			

Report Date: 27-Nov-2015

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client:Paterson Group Consulting EngineersOrder Date: 23-Nov-2015Client PO: 19057Project Description: PE2422

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl tert-butyl ether	8.01	0.05	ug/g	ND	80.1	50-140			
Methylene Chloride	3.02	0.05	ug/g	ND	75.5	60-130			
Styrene	3.31	0.05	ug/g	ND	82.7	60-130			
1,1,1,2-Tetrachloroethane	3.36	0.05	ug/g	ND	84.0	60-130			
1,1,2,2-Tetrachloroethane	3.85	0.05	ug/g	ND	96.3	60-130			
Tetrachloroethylene	4.81	0.05	ug/g	ND	120	60-130			
Toluene	3.47	0.05	ug/g	ND	86.8	60-130			
1,1,1-Trichloroethane	3.26	0.05	ug/g	ND	81.4	60-130			
1,1,2-Trichloroethane	3.12	0.05	ug/g	ND	78.0	60-130			
Trichloroethylene	3.74	0.05	ug/g	ND	93.6	60-130			
Trichlorofluoromethane	3.14	0.05	ug/g	ND	78.4	50-140			
Vinyl chloride	3.23	0.02	ug/g	ND	80.7	50-140			
m,p-Xylenes	6.39	0.05	ug/g	ND	79.9	60-130			
o-Xylene	3.20	0.05	ug/g	ND	79.9	60-130			
Benzene	3.47	0.02	ug/g	ND	86.8	60-130			
Ethylbenzene	2.97	0.05	ug/g	ND	74.3	60-130			
Toluene	3.47	0.05	ug/g	ND	86.8	60-130			
m,p-Xylenes	6.39	0.05	ug/g	ND	79.9	60-130			
o-Xylene	3.20	0.05	ug/g	ND	79.9	60-130			

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client: Paterson Group Consulting Engineers Order Date: 23-Nov-2015
Client PO: 19057 Project Description: PE2422

Qualifier Notes:

QC Qualifiers:

QM-06: Due to noted non-homogeneity of the QC sample matrix, the spike recoveries were out side the accepted range. Batch data accepted based on other QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Report Date: 27-Nov-2015

TRUSTED. RESPONSIVE . Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com

Chain of Custody (Lab Use Only)

Nº 106953

OI!	VINOS SE VI														Page	of	_	
Client	Name: PATERSON				Project Reference:	PF 242	2							TAT	Mn' i			
COntai	MARK DIARCY				Quote#	0210								IAI;	K Regula	r []	3 Day	
Addre					PO# 19 05	7									[] 2 Day	[]	1 Day	
m 1 1	One: GIZ SCALLINADE ROAD				Email Address:	1								Date Re	quired:			
Teleph	013-226-7381				Mdara	1@parte	NOEC	des	9-0	0_								-
Criter	ia: MO. Reg. 153/04 (As Amended) Table 3 [] RSC Fil	ing [] O.	Reg. 558	/00 []	PWQO []CCME	[] SUB (Sto	m) [SUB (Sanita	y) Mu	nicipalit	y:		[]C	Other:			
Matrix	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	SS (Storm/S	Sanitary S	ewer) P	(Paint) A (Air) O (O	ther)	1000	uired			6							
Para	cel Order Number:			ys.			×	Т	T	П	T							
Less y	1548079	.X	Air Volume	of Containers	Sample	Taken	F1-F4+BTEX		s by ICP		vS)							
	Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHCs	VOCs	FAHS	Hg	CrVI B (HWS)							- 4
1	BH6-553	5		2	Nov. 20, 2015		X	X						12	7+	NIO	0	
2	BH7-554	5		3			X		7	П			2	120	T	Tin	0	
3	BH8-554	5		2	V		X			П				10	01	VII	0	
4						1113			\dagger	\forall				100		710	~	
5							\top		1	П								-
6							\top		\dagger	Ħ								7
7									T	Ħ								
8	1.4								T	Ħ								
9	1.8						\top		\dagger	\forall								
10									1	Ħ								
Comm	ents:					1									Method	of Delive	ry:	٨
	shed By (Sign):	Received	d by Driv	er/Depot	Trows	Recei	ved at L	db:	7	0	5		Verified	By:	(1)	110 R		4
ėlinqui	shed By (Print): Xwike Redhead	Date/Tin	ne: Z=	3/11/	15 345	Date/	Time:		No-	29	11.0	5	Date/Tir	me:	MA	1-98	2/10	
ate/Tin	10: Nhu 23 2015	Tempera	ture.	10	r	Temn	erature	11.1	100		- 0	~		eur i	D. /	17	1//	,

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Adrian Menyhart

Client PO: 24102 Project: PE4330 Custody: 44411

Report Date: 2-Aug-2018 Order Date: 27-Jul-2018

Order #: 1830664

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 1830664-01
 BH9-SS2

 1830664-02
 BH10-SS2

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 27-Jul-2018

Client PO: 24102

Project Description: PE4330

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
pH, soil	EPA 150.1 - pH probe @ 25 °C, CaCl buffered ext.	30-Jul-18	31-Jul-18
PHC F1	CWS Tier 1 - P&T GC-FID	31-Jul-18	1-Aug-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	30-Jul-18	1-Aug-18
REG 153: VOCs by P&T GC/MS	EPA 8260 - P&T GC-MS	31-Jul-18	1-Aug-18
Solids, %	Gravimetric, calculation	31-Jul-18	31-Jul-18

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24102

Report Date: 02-Aug-2018 Order Date: 27-Jul-2018 **Project Description: PE4330**

	Client ID:	BH9-SS2	BH10-SS2	-	-
	Sample Date:	07/26/2018 12:00	07/26/2018 12:00	-	-
г	Sample ID:	1830664-01 Soil	1830664-02 Soil	-	-
Physical Characteristics	MDL/Units	3011	3011	-	-
% Solids	0.1 % by Wt.	74.7	74.5	_	_
General Inorganics					
рН	0.05 pH Units	7.49	7.69	-	-
Volatiles	•			•	
Acetone	0.50 ug/g dry	<0.50	<0.50	-	-
Benzene	0.02 ug/g dry	<0.02	<0.02	-	-
Bromodichloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Bromoform	0.05 ug/g dry	<0.05	<0.05	-	-
Bromomethane	0.05 ug/g dry	<0.05	<0.05	-	-
Carbon Tetrachloride	0.05 ug/g dry	<0.05	<0.05	-	-
Chlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Chloroform	0.05 ug/g dry	< 0.05	<0.05	-	-
Dibromochloromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Dichlorodifluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,3-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,4-Dichlorobenzene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethane	0.05 ug/g dry	< 0.05	<0.05	-	-
1,2-Dichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
cis-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,2-Dichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
1,2-Dichloropropane	0.05 ug/g dry	< 0.05	<0.05	-	-
cis-1,3-Dichloropropylene	0.05 ug/g dry	<0.05	<0.05	-	-
trans-1,3-Dichloropropylene	0.05 ug/g dry	< 0.05	<0.05	-	-
1,3-Dichloropropene, total	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylbenzene	0.05 ug/g dry	<0.05	<0.05	-	-
Ethylene dibromide (dibromoethar	0.05 ug/g dry	< 0.05	<0.05	-	-
Hexane	0.05 ug/g dry	<0.05	<0.05	-	-
Methyl Ethyl Ketone (2-Butanone)	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl Isobutyl Ketone	0.50 ug/g dry	<0.50	<0.50	-	-
Methyl tert-butyl ether	0.05 ug/g dry	<0.05	<0.05	-	-
Methylene Chloride	0.05 ug/g dry	<0.05	<0.05	-	-
Styrene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-

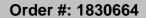
Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24102

Report Date: 02-Aug-2018 Order Date: 27-Jul-2018 **Project Description: PE4330**

	Client ID:	BH9-SS2	BH10-SS2	-	-
	Sample Date:	07/26/2018 12:00	07/26/2018 12:00	-	-
	Sample ID:	1830664-01	1830664-02	-	-
	MDL/Units	Soil	Soil	-	-
1,1,2,2-Tetrachloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
Tetrachloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Toluene	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,1-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	-	-
1,1,2-Trichloroethane	0.05 ug/g dry	<0.05	<0.05	ı	-
Trichloroethylene	0.05 ug/g dry	<0.05	<0.05	-	-
Trichlorofluoromethane	0.05 ug/g dry	<0.05	<0.05	-	-
Vinyl chloride	0.02 ug/g dry	<0.02	<0.02	-	-
m,p-Xylenes	0.05 ug/g dry	<0.05	<0.05	-	-
o-Xylene	0.05 ug/g dry	<0.05	<0.05	-	-
Xylenes, total	0.05 ug/g dry	<0.05	<0.05	-	-
4-Bromofluorobenzene	Surrogate	81.0%	83.9%	-	-
Dibromofluoromethane	Surrogate	102%	131%	-	-
Toluene-d8	Surrogate	63.4%	60.1%	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	7 ug/g dry	<7	<7	-	-
F2 PHCs (C10-C16)	4 ug/g dry	<4	<4	-	-
F3 PHCs (C16-C34)	8 ug/g dry	<8	<8	-	-
F4 PHCs (C34-C50)	6 ug/g dry	<6	<6	-	-


Order #: 1830664

Report Date: 02-Aug-2018 Order Date: 27-Jul-2018

Client: Paterson Group Consulting EngineersOrder Date: 27-Jul-2018Client PO: 24102Project Description: PE4330

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons	_	_	_	_	_	_	_	_	_
F1 PHCs (C6-C10)	ND	7	ug/g						
F2 PHCs (C10-C16)	ND	4	ug/g						
F3 PHCs (C16-C34)	ND	8	ug/g						
F4 PHCs (C34-C50)	ND	6	ug/g						
Volatiles			-						
Acetone	ND	0.50	ug/g						
Benzene	ND	0.02	ug/g						
Bromodichloromethane	ND	0.05	ug/g						
Bromoform	ND	0.05	ug/g						
Bromomethane	ND	0.05	ug/g						
Carbon Tetrachloride	ND	0.05	ug/g						
Chlorobenzene	ND	0.05	ug/g						
Chloroform	ND	0.05	ug/g						
Dibromochloromethane	ND	0.05	ug/g						
Dichlorodifluoromethane	ND	0.05	ug/g						
1,2-Dichlorobenzene	ND	0.05	ug/g						
1,3-Dichlorobenzene	ND	0.05	ug/g						
1,4-Dichlorobenzene	ND	0.05	ug/g						
1,1-Dichloroethane	ND	0.05	ug/g						
1,2-Dichloroethane	ND	0.05	ug/g						
1,1-Dichloroethylene	ND	0.05	ug/g						
cis-1,2-Dichloroethylene	ND	0.05	ug/g						
trans-1,2-Dichloroethylene	ND	0.05	ug/g						
1,2-Dichloropropane	ND	0.05	ug/g						
cis-1,3-Dichloropropylene	ND	0.05	ug/g						
trans-1,3-Dichloropropylene	ND	0.05	ug/g						
1,3-Dichloropropene, total	ND	0.05	ug/g						
Ethylbenzene	ND	0.05	ug/g						
Ethylene dibromide (dibromoethane	ND	0.05	ug/g						
Hexane	ND	0.05	ug/g						
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g						
Methyl Isobutyl Ketone	ND	0.50	ug/g						
Methyl tert-butyl ether	ND	0.05	ug/g						
Methylene Chloride	ND	0.05	ug/g						
Styrene	ND	0.05	ug/g						
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g						
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g						
Tetrachloroethylene	ND	0.05	ug/g						
Toluene	ND	0.05	ug/g						
1,1,1-Trichloroethane	ND	0.05	ug/g						
1,1,2-Trichloroethane	ND	0.05	ug/g						
Trichloroethylene	ND	0.05	ug/g						
Trichlorofluoromethane	ND	0.05	ug/g						
Vinyl chloride	ND	0.02	ug/g						
m,p-Xylenes	ND	0.05	ug/g						
o-Xylene	ND	0.05	ug/g						
Xylenes, total	ND	0.05	ug/g						
Surrogate: 4-Bromofluorobenzene	2.75		ug/g		85.8	50-140			
<u> </u>	2.47		ug/g		77.2	50-140			
Surrogate: Dibromofluoromethane			S. S. , S.		–	00 / 10			

Report Date: 02-Aug-2018

Order Date: 27-Jul-2018

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24102 Project Description: PE4330

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source	%REC	%REC Limit	RPD	RPD Limit	Notes
,	result		UIIIIS	Result	/0NEU	LIIIIII	KFD	LIIIIII	140163
General Inorganics									
pH	7.79	0.05	pH Units	7.79			0.0	10	
Hydrocarbons									
F1 PHCs (C6-C10)	ND	7	ug/g dn/	ND				40	
F2 PHCs (C10-C16)	22500	7 80	ug/g dry	25100			11.0	30	
F3 PHCs (C16-C34)	19200	160	ug/g dry	22800			17.1	30	
F4 PHCs (C34-C50)	586	120	ug/g dry ug/g dry	2440			123.0	30	QR-04
Physical Characteristics	000	120	agrg ary	2110			120.0	00	
% Solids	90.4	0.1	% by Wt.	92.0			1.8	25	
/olatiles									
Acetone	ND	0.50	ug/g dry	ND				50	
Benzene	ND	0.02	ug/g dry	ND				50	
Bromodichloromethane	ND	0.05	ug/g dry	ND				50	
Bromoform	ND	0.05	ug/g dry	ND				50	
Bromomethane	ND	0.05	ug/g dry	ND				50	
Carbon Tetrachloride	ND	0.05	ug/g dry	ND				50	
Chlorobenzene	ND	0.05	ug/g dry	ND				50	
Chloroform	ND	0.05	ug/g dry	ND				50	
Dibromochloromethane	ND	0.05	ug/g dry	ND				50	
Dichlorodifluoromethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,3-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,4-Dichlorobenzene	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,2-Dichloroethane	ND	0.05	ug/g dry	ND				50	
1,1-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
cis-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
trans-1,2-Dichloroethylene	ND	0.05	ug/g dry	ND				50	
1,2-Dichloropropane	ND	0.05	ug/g dry	ND				50	
cis-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
trans-1,3-Dichloropropylene	ND	0.05	ug/g dry	ND				50	
Ethylbenzene	ND	0.05	ug/g dry	ND				50	
Ethylene dibromide (dibromoethane	ND	0.05	ug/g dry	ND				50	
Hexane	ND	0.05	ug/g dry	ND				50	
Methyl Ethyl Ketone (2-Butanone)	ND	0.50	ug/g dry	ND				50	
Methyl Isobutyl Ketone	ND	0.50	ug/g dry	ND				50	
Methyl tert-butyl ether	ND	0.05	ug/g dry	ND				50	
Methylene Chloride	ND	0.05	ug/g dry	ND				50	
Styrene	ND	0.05	ug/g dry	ND				50	
1,1,1,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2,2-Tetrachloroethane	ND	0.05	ug/g dry	ND				50	
Tetrachloroethylene	ND	0.05	ug/g dry	ND				50	
Toluene	ND	0.05	ug/g dry	ND				50	
1,1,1-Trichloroethane	ND	0.05	ug/g dry	ND				50	
1,1,2-Trichloroethane	ND	0.05	ug/g dry	ND				50	
Trichloroethylene	ND	0.05	ug/g dry	ND				50	
Trichlorofluoromethane	ND	0.05	ug/g dry	ND				50	
Vinyl chloride	ND	0.02	ug/g dry	ND				50	
m,p-Xylenes	ND	0.05	ug/g dry	ND				50	
o-Xylene	ND	0.05	ug/g dry	ND				50	
Surrogate: 4-Bromofluorobenzene	3.37		ug/g dry		75.3	50-140			
Surrogate: Dibromofluoromethane	6.02		ug/g dry		134	50-140			
Surrogate: Toluene-d8	3.36		ug/g dry ug/g dry		75.0	50-140			

Report Date: 02-Aug-2018 Order Date: 27-Jul-2018

Project Description: PE4330

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24102 Proje

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
F1 PHCs (C6-C10)	198	7	ug/g		99.2	80-120			
F2 PHCs (C10-C16)	94	4	ug/g		117	80-120			
F3 PHCs (C16-C34)	235	8	ug/g		120	80-120			
F4 PHCs (C34-C50)	147	6	ug/g		118	80-120			
/olatiles									
Acetone	10.1	0.50	ug/g		101	50-140			
Benzene	4.78	0.02	ug/g		120	60-130			
Bromodichloromethane	4.80	0.05	ug/g		120	60-130			
Bromoform	4.87	0.05	ug/g		122	60-130			
Bromomethane	4.52	0.05	ug/g		113	50-140			
Carbon Tetrachloride	4.35	0.05	ug/g		109	60-130			
Chlorobenzene	4.90	0.05	ug/g		123	60-130			
Chloroform	4.52	0.05	ug/g		113	60-130			
Dibromochloromethane	4.99	0.05	ug/g		125	60-130			
Dichlorodifluoromethane	4.73	0.05	ug/g		118	50-140			
1,2-Dichlorobenzene	4.63	0.05	ug/g		116	60-130			
1,3-Dichlorobenzene	3.54	0.05	ug/g		88.5	60-130			
1,4-Dichlorobenzene	3.87	0.05	ug/g		96.7	60-130			
1,1-Dichloroethane	4.74	0.05	ug/g		119	60-130			
1,2-Dichloroethane	4.42	0.05	ug/g		111	60-130			
1,1-Dichloroethylene	4.57	0.05	ug/g		114	60-130			
cis-1,2-Dichloroethylene	4.33	0.05	ug/g		108	60-130			
trans-1,2-Dichloroethylene	4.61	0.05	ug/g		115	60-130			
1,2-Dichloropropane	4.87	0.05	ug/g ug/g		122	60-130			
cis-1,3-Dichloropropylene	4.62	0.05	ug/g ug/g		115	60-130			
trans-1,3-Dichloropropylene	4.54	0.05			114	60-130			
Ethylbenzene	4.95	0.05	ug/g ug/g		124	60-130			
Ethylene dibromide (dibromoethane	4.65	0.05	ug/g ug/g		116	60-130			
Hexane	4.03	0.05	ug/g ug/g		106	60-130			
	9.50	0.03			95.0	50-130			
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	10.6	0.50	ug/g ug/g		106	50-140			
Methyl tert-butyl ether	11.7	0.50	ug/g ug/g		117	50-140			
Methylene Chloride	4.58	0.05	ug/g ug/g		117	60-130			
Styrene	4.56 4.71	0.05			114	60-130			
1,1,1,2-Tetrachloroethane	4.71	0.05	ug/g		124	60-130			
1,1,2,2-Tetrachloroethane	4.9 4 4.85	0.05	ug/g ug/g		124	60-130			
Tetrachloroethylene	4.62	0.05			115	60-130			
Toluene	4.62	0.05	ug/g ug/g		115	60-130			
1,1,1-Trichloroethane	4.01	0.05			106	60-130			
1,1,2-Trichloroethane	4.24	0.05	ug/g ug/g		112	60-130			
Trichloroethylene	4.46	0.05	ug/g ug/g		114	60-130			
Trichlorofluoromethane	4.34	0.05			109	50-130			
Vinyl chloride	4.34 4.46		ug/g		112	50-140 50-140			
•	9.23	0.02	ug/g		115	60-130			
m,p-Xylenes		0.05	ug/g						
o-Xylene Surrogate: 4-Bromofluorobenzene	4.64 1.76	0.05	ug/g <i>ug/g</i>		116 <i>55.1</i>	60-130 <i>50-140</i>			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24102

Report Date: 02-Aug-2018

Order Date: 27-Jul-2018

Project Description: PE4330

Qualifier Notes:

QC Qualifiers:

QR-04: Duplicate results exceeds RPD limits due to non-homogeneous matrix.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

Soil results are reported on a dry weight basis when the units are denoted with 'dry'. Where %Solids is reported, moisture loss includes the loss of volatile hydrocarbons.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Paracel ID: 1830664

Head Office -2319 St. Laurent Blvd. iwa, Ontario K1G 4J8 -800-749-1947 aracel@paracellabs.com

Chain of Custody (Lab Use Only) No

Page 1 of 1

44411

Centact Name: ADRIAN WENY HART Quote #	Project Reference: TE 4330 Turnaround Time	ie:
Telephone: 6 13 - V6 - 7381	Quote # Day 3	Day
Criteria: ZO. Reg. 153/04 (As Amended) Table 3 RSC Filing O Reg. 558/00 PWQO CCME SUB (Storm) SUB (Sanitary) Municipality: Other:		1
Criteria: 2O. Reg. 153/04 (As Amended) Table 3		8,900
Matrix Type: S (Soil Sed.) GW (Ground Water) SW (Surface Water) SS (Storm Sanitary Sewer) P (Paint) A (Air) O (Other) Paracel Order Number: Sample ID/Location Name Sample ID/Location Name SW (Surface Water) SS (Storm Sanitary Sewer) P (Paint) A (Air) O (Other) Required Analyses	SC Filing O. Reg 558/00 PWQO CCME SUB (Storm) SUD (Sanitary) Municipality: Other	
Sample ID/Location Name Sample ID/Location Name Sample Taken Date Time		
Sample ID/Location Name		
Sample ID/Location Name \(\geq \) \(\tau \) Date Time		
1 BH9- 552 S 2 JUY 26 18 PM 950mi+ 1 VIA	W Z Date Time	
	S 2 JUY 26 18 PM 950mit 1 VII	al.
2 BH10-552 5 2 " PM		u ·
3		\top
		\top
5		
		\top
8		\top
,		
10		+
Comments: Method of Delivery. 10 70 Cel	P	
Received by Driver/Depot Received at Lab VINEL PORN DON MAI Verification Comments of the Comme	Received by Driver Depot Course Necessary OVNET PORN DON NA! Vortigation Vortigation	
Reiniquished By (Print) Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time	Date Time 27/07/18 410 Date Time JUST 2018 05-11 Date Time Leads 2411	18 53
Date Time: JUN 27 2018 Temperature: °C Temperature: °C pH Verified [] By: Chain of Custody (Blank) - Rev 0.4 Feb 2016	Temperature: OV. 1 °C/ pH Verified [] By:	

TRUSTED.
RESPONSIVE.
RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA

NIAGARA FALLS

MISSISSAUGA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Phone: (613) 226-7381
Nepean, ON K2E 7T7 Fax: (613) 226-6344

Attn: Eric Leveque

 Client PO: 11568
 Report Date: 5-Oct-2011

 Project: PE2422
 Order Date: 30-Sep-2011

 Custody: 88893
 Order #: 1140255

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1140255-01 BH1-GW1

Approved By:

Mark Froto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Paterson Group Consulting Engineers

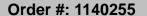
Client PO: 11568 Project Description: PE2422

Report Date: 05-Oct-2011 Order Date: 30-Sep-2011

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	3-Oct-11 4-Oct-11
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	3-Oct-11 3-Oct-11
VOCs	EPA 624 - P&T GC-MS	3-Oct-11 4-Oct-11

Certificate of Analysis


Client: Paterson Group Consulting Engineers

Report Date: 05-Oct-2011 Order Date:30-Sep-2011

Project Description: PE2422 Client PO: 11568

		1011. I LLTLL		
		-	-	-
			- -	-
	Water	_	-	-
		1		
5.0 ug/L	<5.0	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.2 ug/L	<0.2	-	-	-
0.5 ug/L	<0.5	-		-
1.0 ug/L	<1.0	-	-	-
0.5 ug/L	<0.5	-	-	-
3.0 ug/L	<3.0	-	-	-
0.5 ug/L	<0.5	-	-	-
1.0 ug/L	<1.0	-	-	-
0.2 ug/L	<0.2	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
0.5 ug/L	<0.5	-	-	-
1.0 ug/L	<1.0	-	-	-
5.0 ug/L	<5.0	-	-	-
10.0 ug/L	<10.0	-	-	-
5.0 ug/L	<5.0	-	-	-
2.0 ug/L	<2.0	-	-	-
5.0 ug/L	<5.0	-	-	-
	0.5 ug/L 0.5 ug/L 0.5 ug/L 0.5 ug/L 0.2 ug/L 0.5 ug/L 1.0 ug/L 1.0 ug/L 3.0 ug/L 0.5 ug/L	Client ID: Sample Date: Sample ID: BH1-GW1 30-Sep-11 1140255-01 Water MDL/Units Water 5.0 ug/L <5.0	Sample ID: 30-Sep-11 - MDL/Units 30-Sep-11 - MDL/Units Water - 5.0 ug/L <5.0 - 0.5 ug/L <0.5 - 1.0 ug/L <1.0 - 0.5 ug/L <0.5 - 1.0 ug/L <1.0 - 0.5 ug/L <0.5 - 1.0 ug/L <1.0 - 0.5 ug/L <0.5 - 0.5 ug/L <0.5	Client ID: Sample Date: Sample ID: 30-Sep-11 -

OTTAWA

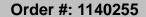
Report Date: 05-Oct-2011

Certificate of Analysis

Client: Paterson Group Consulting Engineers Order Date:30-Sep-2011 Project Description: PE2422 Client PO: 11568

Olicita G. 11000	Client ID:	BH1-GW1	-	-	-
	Sample Date:	30-Sep-11	-	-	-
	Sample ID:	1140255-01	-	-	-
	MDL/Units	Water	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	-
o-Xylene	0.5 ug/L	28.1	-	-	-
Xylenes, total	0.5 ug/L	28.1	-	-	-
4-Bromofluorobenzene	Surrogate	99.7%	-	-	-
Dibromofluoromethane	Surrogate	98.1%	-	-	-
Toluene-d8	Surrogate	111%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	401	-	-	-
F2 PHCs (C10-C16)	100 ug/L	435	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-
F1 + F2 PHCs	125 ug/L	836	-	-	-
F3 + F4 PHCs	200 ug/L	<200	-	-	-

Client: Paterson Group Consulting Engineers

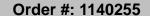

Client PO: 11568 Project Description: PE2422

Report Date: 05-Oct-2011

Order #: 1140255

Order Date:30-Sep-2011

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles			J						
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5 0.5	ug/L						
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ND		ug/L						
Trichloroethylene	ND ND	0.5 0.5	ug/L						
Trichloroethylene Trichlorofluoromethane	ND ND	0.5 1.0	ug/L						
1,3,5-Trimethylbenzene	ND ND	0.5	ug/L						
			ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene Xylenes, total	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L		06 5	EO 440			
Surrogate: 4-Bromofluorobenzene	30.9		ug/L		96.5	50-140			
Surrogate: Dibromofluoromethane	30.8		ug/L		96.4	50-140			
Surrogate: Toluene-d8	35.1		ug/L		110	50-140			


Client: Paterson Group Consulting Engineers

Client PO: 11568 Project Description: PE2422

Report Date: 05-Oct-2011 Order Date: 30-Sep-2011

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles			3					-	
	ND	5 0	/1	ND				20	
Acetone	ND	5.0	ug/L	ND				30	
Benzene Brown of introducer at the const	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform Bromomethane	ND ND	0.5 0.5	ug/L	ND ND				30 30	
Carbon Tetrachloride	ND ND	0.5	ug/L	ND				30	
	ND ND	0.2	ug/L ug/L	ND ND				30	
Chlorobenzene Chloroethane	ND ND	1.0	ug/L ug/L	ND				30	
Chloroform	ND ND	0.5		ND				30	
Chloromethane			ug/L						
Dibromochloromethane	ND ND	3.0 0.5	ug/L ug/L	ND ND				30 30	
Dibromochioromethane Dichlorodifluoromethane	ND ND	0.5 1.0	ug/∟ ug/L	ND ND				30	
1,2-Dibromoethane	ND ND	0.2	ug/L ug/L	ND				30	
1,2-Diointoethane 1,2-Dichlorobenzene	ND ND	0.2	ug/L ug/L	ND				30	
1,3-Dichlorobenzene	ND ND	0.5	•	ND				30	
1,3-Dichlorobenzene	ND ND	0.5	ug/L	ND				30	
1,4-Dichloroberizerie 1,1-Dichloroethane	ND ND	0.5	ug/L ug/L	ND				30	
1,2-Dichloroethane	ND ND	0.5	ug/L ug/L	ND				30	
1,2-Dichloroethalle 1,1-Dichloroethylene	ND ND	0.5	ug/L ug/L	ND				30	
cis-1,2-Dichloroethylene	ND ND	0.5	ug/L ug/L	ND				30	
trans-1,2-Dichloroethylene	ND ND	0.5	ug/L ug/L	ND				30	
1,2-Dichloropropane	ND ND	0.5	ug/L ug/L	ND				30	
cis-1,3-Dichloropropylene	ND ND	0.5	ug/L ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND ND	1.0	ug/L ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Butahone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	35.0	0.0	ug/L	ND	110	50-140			
· ·	29.9		ug/L ug/L	ND	93.5	50-140			
Surrogate: Dibromofluoromethane									

Client: Paterson Group Consulting Engineers

Project Description: PE2422 Client PO: 11568

Report Date: 05-Oct-2011

Order Date:30-Sep-2011

Analyte	Result	Reporting Limit	Units	Source	%REC	%REC Limit	RPD	RPD Limit	Notes
•				Result		LIIIII			
Hydrocarbons									
F1 PHCs (C6-C10)	1990	25	ug/L	ND	99.6	68-117			
F2 PHCs (C10-C16)	1360	100	ug/L	ND	85.0	60-140			
F3 PHCs (C16-C34)	3550	100	ug/L	ND	88.7	60-140			
F4 PHCs (C34-C50)	2480	100	ug/L	ND	103	60-140			
Volatiles									
Acetone	113	5.0	ug/L	ND	113	50-140			
Benzene	36.4	0.5	ug/L	ND	91.0	60-130			
Bromodichloromethane	48.5	0.5	ug/L	ND	121	60-130			
Bromoform	51.1	0.5	ug/L	ND	128	60-130			
Bromomethane	45.7	0.5	ug/L	ND	114	50-140			
Carbon Tetrachloride	49.8	0.2	ug/L	ND	125	60-130			
Chlorobenzene	31.2	0.5	ug/L	ND	78.1	60-130			
Chloroethane	38.5	1.0	ug/L	ND	96.2	50-140			
Chloroform	35.0	0.5	ug/L	ND	87.4	60-130			
Chloromethane	42.3	3.0	ug/L	ND	106	50-140			
Dibromochloromethane	45.0	0.5	ug/L	ND	112	60-130			
Dichlorodifluoromethane	40.3	1.0	ug/L	ND	101	50-140			
,2-Dibromoethane	37.3	0.2	ug/L	ND	93.3	60-130			
,2-Dichlorobenzene	36.4	0.5	ug/L	ND	90.9	60-130			
,3-Dichlorobenzene	33.8	0.5	ug/L	ND	84.4	60-130			
,4-Dichlorobenzene	40.3	0.5	ug/L	ND	101	60-130			
,1-Dichloroethane	33.0	0.5	ug/L	ND	82.5	60-130			
,2-Dichloroethane	35.6	0.5	ug/L	ND	89.1	60-130			
,1-Dichloroethylene	40.8	0.5	ug/L	ND	102	60-130			
is-1,2-Dichloroethylene	37.2	0.5	ug/L	ND	93.0	60-130			
ans-1,2-Dichloroethylene	41.8	0.5	ug/L	ND	104	60-130			
,2-Dichloropropane	35.2	0.5	ug/L	ND	87.9	60-130			
is-1,3-Dichloropropylene	35.8	0.5	ug/L	ND	89.6	60-130			
ans-1,3-Dichloropropylene	41.3	0.5	ug/L	ND	103	60-130			
thylbenzene	29.2	0.5	ug/L	ND	73.0	60-130			
lexane	46.2	1.0	ug/L	ND	115	60-130			
Methyl Ethyl Ketone (2-Butanone)	123	5.0	ug/L	ND	123	50-140			
Methyl Butyl Ketone (2-Hexanone)	110	10.0	ug/L	ND	110	50-140			
Methyl Isobutyl Ketone	120	5.0	ug/L	ND	120	50-140			
Methyl tert-butyl ether	74.8	2.0	ug/L	ND	74.8	50-140			
lethylene Chloride	38.0	5.0	ug/L	ND	95.0	60-130			
styrene	33.5	0.5	ug/L	ND	83.8	60-130			
,1,1,2-Tetrachloroethane	38.0	0.5	ug/L	ND	94.9	60-130			
,1,2,2-Tetrachloroethane	44.1	0.5	ug/L	ND	110	60-130			
etrachloroethylene	29.8	0.5	ug/L	ND	74.4	60-130			
oluene	32.9	0.5	ug/L	ND	82.3	60-130			
,2,4-Trichlorobenzene	44.3	0.5	ug/L	ND	111	60-130			
,1,1-Trichloroethane	49.9	0.5	ug/L	ND	125	60-130			
,1,2-Trichloroethane	35.9	0.5	ug/L	ND	89.8	60-130			
richloroethylene	48.5	0.5	ug/L	ND	121	60-130			
Trichlorofluoromethane	49.7	1.0	ug/L	ND	124	60-130			
,3,5-Trimethylbenzene	34.6	0.5	ug/L	ND	86.6	60-130			
/inyl chloride	35.9	0.5	ug/L	ND	89.7	50-140			
n,p-Xylenes	60.4	0.5	ug/L	ND	75.5	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 11568 Project Description: PE2422 Report Date: 05-Oct-2011

Order Date:30-Sep-2011

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene	29.4	0.5	ug/L	ND	73.4	60-130			
Surrogate: 4-Bromofluorobenzene	29.1		ug/L		91.0	50-140			

NIAGARA FALLS 5415 Morning Glory Crt. Niagara Falls, ON L2J 0A3

Report Date: 05-Oct-2011

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date:30-Sep-2011 Client PO: 11568 Project Description: PE2422

Sample and QC Qualifiers Notes

None

Sample Data Revisions

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

OTTAWA

NIAGARA FALLS

TRUSTED. RESPONSIVE. RELIABLE.

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947 e: paracel@paracellabs.com

www.paracellabs.com

OTTAWA

NIAGARA FALLS

MISSISSAUGA

Certificate of Analysis

Paterson Group Consulting Engineers

28 Concourse Gate, Unit 1 Phone: (613) 226-7381 Nepean, ON K2E 7T7 Fax: (613) 226-6344

Attn: Mark D'Arcy

Client PO: 11429 Report Date: 7-Nov-2011 Project: PE2422 Order Date: 1-Nov-2011 Order #: 1145091 Custody: 85580

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1145091-01 BH2-GW1

Approved By:

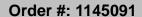
Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 11429 Project Description: PE2422 Report Date: 07-Nov-2011 Order Date:1-Nov-2011

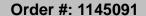
Analysis Summary Table


Analysis	Method Reference/Description	Extraction Date Analysis Date
VOCs	EPA 624 - P&T GC-MS	4-Nov-11 5-Nov-11

Report Date: 07-Nov-2011 Order Date:1-Nov-2011

Certificate of Analysis Client: Paterson Group Consulting Engineers			Rep
Client PO: 11429	Project Descripti	on: PE2422	
Oli ID-	DLIO CIMA		

Onone 1 0. 11-123	Client ID:	BH2-GW1	-	-	-
	Sample Date:	01-Nov-11	-	-	-
<u>-</u>	Sample ID:	1145091-01	-	-	-
	MDL/Units	Water	-	-	-
Volatiles	50 "		 		
Acetone	5.0 ug/L	47.0	-	-	-
Benzene	0.5 ug/L	<0.5	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	113	-	-	-
Methyl Butyl Ketone (2-Hexanone)	10.0 ug/L	17.1	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-
•	L				

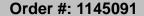


Client: Paterson Group Consulting Engineers

Client PO: 11429 Project Description: PE2422

Report Date: 07-Nov-2011 Order Date:1-Nov-2011

Client ID:	BH2-GW1	-	-	-	
Sample Date:		-	-	-	
Sample ID:		-	-	-	
MDL/Units	Water	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	•	
0.5 ug/L	<0.5	-	-	1	
0.5 ug/L	10.4	-	-	•	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
1.0 ug/L	<1.0	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
0.5 ug/L	<0.5	-	-	-	
Surrogate	95.7%	-	-	-	
Surrogate	82.2%	-	-	-	
Surrogate	86.8%	-	-	-	
	Sample Date: Sample ID: MDL/Units 0.5 ug/L 5 ug/L 0.5 ug/L 0.5 ug/L 5 ug/L	Sample Date: Sample ID: MDL/Units 01-Nov-11 1145091-01 Water MDL/Units Water 0.5 ug/L <0.5	Sample Date: Sample ID: 01-Nov-11 - 1145091-01 <th colspan<="" td=""><td>Sample Date: Sample ID: 1145091-01 01-Nov-11 1145091-01 -<</td></th>	<td>Sample Date: Sample ID: 1145091-01 01-Nov-11 1145091-01 -<</td>	Sample Date: Sample ID: 1145091-01 01-Nov-11 1145091-01 -<



Client: Paterson Group Consulting Engineers

Client PO: 11429 Project Description: PE2422 Report Date: 07-Nov-2011

Order Date:1-Nov-2011

		Reporting		Source		%REC		RPD	
Analyte	Result	Ĺimit	Units	Result	%REC	Limit	RPD	Limit	Notes
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L ug/L						
1,2-Distribution 1,2-Di	ND	0.2	ug/L ug/L						
1,3-Dichlorobenzene	ND	0.5							
1.4-Dichlorobenzene	ND	0.5	ug/L						
,			ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	29.6	0.5	ug/L ug/L		92.6	50-140			
Surrogate: 0ibromofluoromethane	29.0 27.2		ug/L ug/L		<i>85.0</i>	50-140 50-140			
Surrogata: Dibromothioromothana									

trans-1,3-Dichloropropylene

Methyl Ethyl Ketone (2-Butanone)

Ethylbenzene

Hexane

Client: Paterson Group Consulting Engineers

Client PO: 11429 Project Description: PE2422

Report Date: 07-Nov-2011 Order Date:1-Nov-2011

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

30

Method Quality Control: Duplicate Reporting Source %REC **RPD** Analyte Result Limit RPD Units %REC Notes Limit Limit Result **Volatiles** Acetone ND 5.0 ug/L ND 30 Benzene ND 0.5 ug/L ND 30 ug/L Bromodichloromethane ND 0.5 ND 30 ND ug/L ND 30 Bromoform 0.5 ND **Bromomethane** ND 0.5 ug/L 30 Carbon Tetrachloride ND 30 ND 0.2 ug/L Chlorobenzene ND 0.5 ug/L ND 30 Chloroethane ND 1.0 ug/L ND 30 Chloroform ND 30 ND 0.5 ug/L Chloromethane ND 3.0 ug/L ND 30 Dibromochloromethane ND 0.5 ug/L ND 30 ug/L Dichlorodifluoromethane ND 1.0 ND 30 1,2-Dibromoethane ND 0.2 ug/L ND 30 1,2-Dichlorobenzene ND 0.5 ug/L ND 30 30 1.3-Dichlorobenzene ND 0.5 ug/L ND ND 1,4-Dichlorobenzene ND 0.5 ug/L 30 1.1-Dichloroethane ND 0.5 ug/L ND 30 ND 1,2-Dichloroethane ND 0.5 ug/L 30 1,1-Dichloroethylene ND 0.5 ug/L ND 30 cis-1,2-Dichloroethylene ND ND 0.5 ug/L 30 trans-1,2-Dichloroethylene ND 0.5 ug/L ND 30 1,2-Dichloropropane ND 0.5 ug/L ND 30 ug/L cis-1.3-Dichloropropylene ND 0.5 ND 30

ug/L

ug/L

ug/L

ug/L

ND

ND

ND

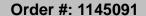
ND

Methyl Butyl Ketone (2-Hexanone) ND ND 10.0 ug/L Methyl Isobutyl Ketone ND 5.0 ug/L ND Methyl tert-butyl ether ND 2.0 ug/L ND Methylene Chloride ND 5.0 ug/L ND Styrene ND 0.5 ug/L ND 1,1,1,2-Tetrachloroethane ND 0.5 ug/L ND 1,1,2,2-Tetrachloroethane ND 0.5 ug/L ND Tetrachloroethylene ND 0.5 ug/L ND Toluene ND 0.5 ug/L ND ug/L 1.2.4-Trichlorobenzene ND 0.5 ND 1,1,1-Trichloroethane ND 0.5 ug/L ND ug/L 1.1.2-Trichloroethane ND 0.5 ND Trichloroethylene ND 0.5 ug/L ND ug/L Trichlorofluoromethane ND ND 1.0 1,3,5-Trimethylbenzene ND 0.5 ug/L ND ug/L Vinyl chloride ND 0.5 ND m,p-Xylenes ND 0.5 ug/L ND o-Xylene ND 0.5 ug/L ND Surrogate: 4-Bromofluorobenzene 31.7 ug/L ND 99.1 50-140 Surrogate: Dibromofluoromethane 50-140 27.8 ND 86.8 ug/L Surrogate: Toluene-d8 ug/L 30.9 ND 96.6 50-140

ND

ND

ND


ND

0.5

0.5

1.0

5.0

Client: Paterson Group Consulting Engineers

Client PO: 11429 Project Description: PE2422

Report Date: 07-Nov-2011 Order Date:1-Nov-2011

		Reporting		Cauraa		0/ DEC		RPD	
Analyte	Result	Limit	Units	Source Result	%REC	%REC Limit	RPD	Limit	Notes
Volatiles									
Acetone	60.8	5.0	ug/L	ND	60.8	50-140			
Benzene	29.2	0.5	ug/L	ND	72.9	50-140			
Bromodichloromethane	33.4	0.5	ug/L	2.13	78.1	50-140			
Bromoform	21.9	0.5	ug/L	ND	54.8	50-140			
Bromomethane	5.55	0.5	ug/L	ND	13.9	50-140			
Carbon Tetrachloride	36.6	0.2	ug/L	ND	91.6	50-140			
Chlorobenzene	35.6	0.5	ug/L	ND	88.9	50-140			
Chloroethane	20.6	1.0	ug/L	ND	51.4	50-140			
Chloroform	35.7	0.5	ug/L	5.15	76.4	50-140			
Chloromethane	37.1	3.0	ug/L	ND	92.6	50-140			
Dibromochloromethane	27.8	0.5	ug/L	ND	69.5	50-140			
Dichlorodifluoromethane	22.8	1.0	ug/L	ND	56.9	50-140			
,2-Dibromoethane	34.6	0.2	ug/L	ND	86.4	50-140			
,2-Dichlorobenzene	33.5	0.5	ug/L	ND	83.8	50-140			
,3-Dichlorobenzene	33.4	0.5	ug/L	ND	83.4	50-140			
,4-Dichlorobenzene	30.5	0.5	ug/L	ND	76.3	50-140			
,1-Dichloroethane	26.6	0.5	ug/L	ND	66.6	50-140			
,2-Dichloroethane	30.7	0.5	ug/L	ND	76.8	50-140			
,1-Dichloroethylene	25.2	0.5	ug/L	ND	63.1	50-140			
is-1,2-Dichloroethylene	25.1	0.5	ug/L	ND	62.7	50-140			
rans-1,2-Dichloroethylene	29.9	0.5	ug/L	ND	74.8	50-140			
,2-Dichloropropane	25.3	0.5	ug/L	ND	63.2	50-140			
is-1,3-Dichloropropylene	26.9	0.5	ug/L ug/L	ND	67.2	50-140			
	21.4	0.5	_	ND	53.6	50-140			
rans-1,3-Dichloropropylene	30.2		ug/L			50-140			
Ethylbenzene		0.5	ug/L	ND	75.6				
lexane	23.7	1.0	ug/L	ND	59.4	50-140			
Methyl Ethyl Ketone (2-Butanone)	52.7	5.0	ug/L	ND	52.7	50-140			
Methyl Butyl Ketone (2-Hexanone)	58.2	10.0	ug/L	ND	58.2	50-140			
Methyl Isobutyl Ketone	51.2	5.0	ug/L	ND	51.2	50-140			
Methyl tert-butyl ether	100	2.0	ug/L	ND	100	50-140			
Methylene Chloride	20.8	5.0	ug/L	ND	52.0	50-140			
Styrene	25.6	0.5	ug/L	ND	63.9	50-140			
,1,1,2-Tetrachloroethane	31.8	0.5	ug/L	ND	79.6	50-140			
,1,2,2-Tetrachloroethane	28.4	0.5	ug/L	ND	71.0	50-140			
etrachloroethylene	36.8	0.5	ug/L	ND	91.9	50-140			
oluene	33.8	0.5	ug/L	ND	84.6	50-140			
,2,4-Trichlorobenzene	52.5	0.5	ug/L	ND	131	50-140			
,1,1-Trichloroethane	35.3	0.5	ug/L	ND	88.2	50-140			
,1,2-Trichloroethane	27.8	0.5	ug/L	ND	69.6	50-140			
richloroethylene	32.0	0.5	ug/L	ND	79.9	50-140			
richlorofluoromethane	24.6	1.0	ug/L	ND	61.5	50-140			
,3,5-Trimethylbenzene	33.0	0.5	ug/L	ND	82.4	50-140			
/inyl chloride	36.5	0.5	ug/L	ND	91.2	50-140			
n,p-Xylenes	54.6	0.5	ug/L	ND	68.3	50-140			
o-Xylene	34.7	0.5	ug/L	ND	86.7	50-140			
Surrogate: 4-Bromofluorobenzene	27.2		ug/L		84.9	50-140			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 11429 Project Description: PE2422

Report Date: 07-Nov-2011 Order Date:1-Nov-2011

Sample and QC Qualifiers Notes

None

Sample Data Revisions

None

Work Order Revisions/Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

	RUSTED
O TANACLL RE	ESPONS
LABORATORIES LTD. RE	ELIABLE
	(GA (0) S
OTTAWA @ KINGSTON @ NIAGARA @ MISSISSAU	
Client Name: Paterson Group	Proje
Client Name: Paterson Group Contact Name: Mark D'Arry	Proje
Contact Name: Mark D'Arcy	Proje
Client Name: Paterson Group Contact Name: Mark D'Arcy Address: 28 Concourse Gates Unit 1	Proje Quote PO #

Head Office 300-2319 St. Laurent Blvd. SIVE . Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

Chain of Custody (Lab Use Only)

85580

OTTAWA ® KINGSTON ® NIAGARA ® M	ISSISSAU	GA ◉	SAF	NIA		www	paracellabs.	com	ľ		Pa	ge	of _		
	100100110			Reference: PG	7.474		and a	7		TAT:	_	Regular			
12101307 01007			Ouote #	16	017-1	3	-				(1	2 Day			
Contact Name: Mark D'Arcy	1.														
Address: 28 Concourse Gates Unit 1	,		PO#								[]	1 Day			
Ottanti ON			Email A	ddress: Marc	@ rate	ssonaso	UD CG				[]	Same Da	ıy		
				mancy	y Coparino	30.310	ofice			Date F	teguired:				_
Telephone: 6 /3 226 - 738 (Samples Submitted Under: 10. Reg. 153/04*	T-Li. [IO Pac	511/00	Table [] PV	V00 1100V	IF I I Sewer U	se (Storm)	1 Sewe	r Use (S						
]									
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water	r) SS (Storm/Sa	anitary S	ewer) P	Paint) A (Air) O (Other)				Requi	red Ar	alyses				
Paracel Order Number:		le	iers												
1145091	Matrix	Air Volume	of Containers	Sample	Taken	Vocs									
Sample ID/Location Name		Ai	Jo#	Date	Time	7									
1 BH5-6W1	6W		2	Nov. 1/11	llam	×		-	Rea	ds.	BH2	- G	NI		
2											(use	this	10	per	Tyle
3													- 33	-N	10
4											-				J
5											-				
6															
7															_
8															
9															
10													0 to 12		
Comments: Will call with P.	0.#											Method	of Deliy	Je I	N
Relinquished By (Print & Sign): T. Robinson	Receive	ed by Dr	iver/Dep	ot:	Rece	vedarkal:	m		J	Verifie	d By: M/C		_;L		
The fli	Date/Ti	me:			The second secon	Time: (O) /\	(N.j.	1//		Date/Time; Nov 1/11 1:00					
Dolo/Time: Nov 1 2011 11:500m	Temper	rature:		o,C	Temp	perature: 2.8	C°C			pH Ve	rified[]	By:	'N	H	

Temperature:

11:50am

Date/Time: Nov. 1 2011

Head Office

300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8

p: 1-800-749-1947

e: paracel@paracellabs.com

www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Phone: (613) 226-7381 Nepean, ON K2E 7J5 Fax: (613) 226-6344

Attn: Mark D'Arcy

Client PO: 12527 Report Date: 27-Jun-2012 Project: PE2422 Order Date: 25-Jun-2012

Custody: 3368 Order #: 1226057

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 1226057-01 BH1-GW2

Approved By:

Mark Foto

Mark Foto, M.Sc. For Dale Robertson, BSc Laboratory Director

Certificate of Analysis

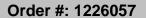
Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422

Report Date: 27-Jun-2012 Order Date: 25-Jun-2012

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date Analysis Date
CCME PHC F1	CWS Tier 1 - P&T GC-FID	26-Jun-12 27-Jun-12
CCME PHC F2 - F4	CWS Tier 1 - GC-FID, extraction	26-Jun-12 27-Jun-12
VOCs	EPA 624 - P&T GC-MS	26-Jun-12 27-Jun-12

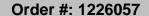


Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422 Report Date: 27-Jun-2012 Order Date:25-Jun-2012

CHERT O. 12327	0" (15	PLIA OWO		I	I
	Client ID:	BH1-GW2 25-Jun-12	-	-	-
	Sample Date: Sample ID:	1226057-01		-	
1	MDL/Units	Water	_	-	-
Volatiles	MDL, OTHE		<u> </u>		
Acetone	5.0 ug/L	<5.0	-	-	-
Benzene	0.5 ug/L	5.2	-	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	-
Bromoform	0.5 ug/L	<0.5	-	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	-
Chloroethane	1.0 ug/L	<1.0	-	-	-
Chloroform	0.5 ug/L	<0.5	-	-	-
Chloromethane	3.0 ug/L	<3.0	-	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	-
Dichlorodifluoromethane	1.0 ug/L	<1.0	-	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	-
Ethylbenzene	0.5 ug/L	4.1	-	-	-
Hexane	1.0 ug/L	<1.0	-	-	-
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	-	-	-
Methyl Butyl Ketone (2-Hexanone	10.0 ug/L	<10.0	-	-	-
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	-	-	-
Methyl tert-butyl ether	2.0 ug/L	<2.0	-	-	-
Methylene Chloride	5.0 ug/L	<5.0	-	-	-



Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422

Report Date: 27-Jun-2012 Order Date: 25-Jun-2012

CHEFIT FO: 12327	он нь Г	PLIA OWO	1. 1 66766		
	Client ID:	BH1-GW2	-	-	-
	Sample Date:	25-Jun-12 1226057-01	-	-	-
	Sample ID:		_	-	-
r	MDL/Units	Water	-	-	-
Styrene	0.5 ug/L	<0.5	-	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	-
Toluene	0.5 ug/L	<0.5	-	-	-
1,2,4-Trichlorobenzene	0.5 ug/L	<0.5	-	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	-
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	-
Trichlorofluoromethane	1.0 ug/L	<1.0	-	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	0.9	-	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	-
m,p-Xylenes	0.5 ug/L	4.5	-	-	-
o-Xylene	0.5 ug/L	1.2	-	-	-
Xylenes, total	0.5 ug/L	5.7	-	-	-
4-Bromofluorobenzene	Surrogate	112%	-	-	-
Dibromofluoromethane	Surrogate	104%	-	-	-
Toluene-d8	Surrogate	104%	-	-	-
Hydrocarbons					
F1 PHCs (C6-C10)	25 ug/L	117	-	-	-
F2 PHCs (C10-C16)	100 ug/L	<100	-	-	-
F3 PHCs (C16-C34)	100 ug/L	<100	-	-	-
F4 PHCs (C34-C50)	100 ug/L	<100	-	-	-

Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422

Report Date: 27-Jun-2012 Order Date: 25-Jun-2012

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
•			0.1110	ROSUIT	701120		5		
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroethane	ND	1.0	ug/L						
Chloroform	ND	0.5	ug/L						
Chloromethane	ND	3.0	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dibromoethane	ND	0.2	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloroethylene, total	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND ND	0.5 1.0	ug/L						
Hexane Methyl Ethyl Ketona (2 Butanana)	ND	5.0	ug/L						
Methyl Ethyl Ketone (2-Butanone) Methyl Butyl Ketone (2-Hexanone)	ND ND	10.0	ug/L ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,2,4-Trichlorobenzene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
1,3,5-Trimethylbenzene	ND	0.5	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	90.9		ug/L		114	50-140			
Surrogate: Dibromofluoromethane	83.2		ug/L		104	50-140			
Surrogate: Toluene-d8	82.6		ug/L		103	50-140			

Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422 Report Date: 27-Jun-2012 Order Date:25-Jun-2012

Method Quality Control: Duplicate Reporting %REC RPD Source

Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles			-						
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND ND	0.5	ug/L ug/L	ND ND				30	
Carbon Tetrachloride	ND ND	0.3	ug/L ug/L	ND				30	
Chlorobenzene	ND ND	0.2	•	ND				30	
Chloroethane	ND ND		ug/L	ND ND				30	
		1.0	ug/L						
Chloroform	ND	0.5	ug/L	ND				30	
Chloromethane	ND	3.0	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dibromoethane	ND	0.2	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,2,4-Trichlorobenzene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	90.6	0.0	ug/L ug/L	ND	113	50-140		00	
Surrogate: Dibromofluoromethane	80.3		ug/L ug/L	ND ND	100	50-140 50-140			
•			•						
Surrogate: Toluene-d8	84.4		ug/L	ND	106	50-140			

Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422 Report Date: 27-Jun-2012

Order Date:25-Jun-2012

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	2020	25	ug/L	ND	101	68-117			
F2 PHCs (C10-C16)	1300	100	ug/L	ND	81.2	60-140			
F3 PHCs (C16-C34)	3140	100	ug/L	ND	78.4	60-140			
F4 PHCs (C34-C50)	1960	100	ug/L	ND	81.5	60-140			
Volatiles									
Acetone	122	5.0	ug/L	ND	122	50-140			
Benzene	32.4	0.5	ug/L	ND	81.0	60-130			
Bromodichloromethane	31.0	0.5	ug/L	ND	77.6	60-130			
Bromoform	25.0	0.5	ug/L	ND	62.6	60-130			
Bromomethane	31.0	0.5	ug/L	ND	77.6	50-140			
Carbon Tetrachloride	29.6	0.2	ug/L	ND	74.0	60-130			
Chlorobenzene	27.0	0.5	ug/L	ND	67.4	60-130			
Chloroethane	31.8	1.0	ug/L	ND	79.4	50-140			
Chloroform	31.0	0.5	ug/L	ND	77.6	60-130			
Chloromethane	25.2	3.0	ug/L	ND	63.1	50-140			
Dibromochloromethane	26.0	0.5	ug/L	ND	65.1	60-130			
Dichlorodifluoromethane	27.6	1.0	ug/L	ND	69.0	50-140			
,2-Dibromoethane	26.2	0.2	ug/L	ND	65.6	60-130			
,2-Dichlorobenzene	30.9	0.5	ug/L	ND	77.2	60-130			
,3-Dichlorobenzene	33.7	0.5	ug/L	ND	84.2	60-130			
.4-Dichlorobenzene	33.4	0.5	ug/L	ND	83.5	60-130			
,1-Dichloroethane	32.1	0.5	ug/L	ND	80.2	60-130			
,2-Dichloroethane	31.4	0.5	ug/L	ND	78.6	60-130			
,1-Dichloroethylene	35.2	0.5	ug/L	ND	87.9	60-130			
sis-1,2-Dichloroethylene	34.9	0.5	ug/L	ND	87.2	60-130			
rans-1,2-Dichloroethylene	33.7	0.5	ug/L	ND	84.2	60-130			
1,2-Dichloropropane	34.6	0.5	ug/L	ND	86.5	60-130			
cis-1,3-Dichloropropylene	35.6	0.5	ug/L	ND	89.0	60-130			
rans-1,3-Dichloropropylene	38.2	0.5	ug/L	ND	95.4	60-130			
Ethylbenzene	27.0	0.5	ug/L	ND	67.4	60-130			
Hexane	29.8	1.0	ug/L	ND	74.6	60-130			
Methyl Ethyl Ketone (2-Butanone)	80.3	5.0	ug/L	ND	80.3	50-140			
Methyl Butyl Ketone (2-Hexanone)	91.2	10.0	ug/L	ND	91.2	50-140			
Methyl Isobutyl Ketone	85.2	5.0	ug/L	ND	85.2	50-140			
Methyl tert-butyl ether	75.1	2.0	ug/L	ND	75.1	50-140			
Methylene Chloride	32.7	5.0	ug/L	ND	81.7	60-130			
Styrene	27.0	0.5	ug/L	ND	67.5	60-130			
,1,1,2-Tetrachloroethane	26.3	0.5	ug/L	ND	65.8	60-130			
,1,2,2-Tetrachloroethane	28.1	0.5	ug/L	ND	70.3	60-130			
Tetrachloroethylene	24.8	0.5	ug/L	ND	62.0	60-130			
oluene	34.4	0.5	ug/L	ND	86.0	60-130			
,2,4-Trichlorobenzene	26.8	0.5	ug/L	ND	67.0	60-130			
1,1,1-Trichloroethane	30.3	0.5	ug/L	ND	75.6	60-130			
I,1,2-Trichloroethane	34.0	0.5	ug/L	ND	84.9	60-130			
Frichloroethylene	33.7	0.5	ug/L	ND	84.2	60-130			
Frichlorofluoromethane	27.1	1.0	ug/L	ND	67.7	60-130			
I,3,5-Trimethylbenzene	35.7	0.5	ug/L	ND	89.4	60-130			
√inyl chloride	37.8	0.5	ug/L	ND	94.5	50-140			
n,p-Xylenes	54.4	0.5	ug/L	ND	68.0	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 12527 Project Description: PE2422

Report Date: 27-Jun-2012 Order Date: 25-Jun-2012

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
o-Xylene Surrogate: 4-Bromofluorobenzene	26.8 <i>51.1</i>	0.5	ug/L <i>ug/</i> L	ND	67.0 63.8	60-130 <i>50-140</i>			

NIAGARA FALLS

PARACEL Order #: 1226057

Certificate of AnalysisReport Date: 27-Jun-2012Client: Paterson Group Consulting EngineersOrder Date: 25-Jun-2012

Client PO: 12527 Project Description: PE2422

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

@PARACEL	TR	USTE SPOI		Ε.	
LABORATORIES LTD. OTTAWA ® KINGSTON ® NIAGARA ® MISSIS		LIAB SAR			
Client Name: Paterson Grows		- 0/111		Reference: 7	E242
Contact Name: Rig Mark D'Arey			Quote #		
Address: 154 Columnade Rd.			PO#	1252°	7
Telephone: 613-226-7361			A2000 1850 C		paterson
Criteria: [] O. Reg. 153/04 Table O. Reg. 153/11 (Curre	nt) Table Z	RSC	Filing	O. Reg. 558/00	PWQO I
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water)	SS (Storm/Sa	nitary Se	wer) P(l	Paint) A (Air) O (0	Other)
Paracel Order Number:	rix	Air Volume	Containers	Sample	e Taken
Sample ID/Location Name	Matrix	Air	Jo#	Date	Time
1 10.11 / 1 -	1		2	1	Α.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com

Chain of Custody (Lab Use Only) No

3368

									100000000000000000000000000000000000000				ACCORDING TO THE PARTY OF THE P
OTTAWA @ KINGSTON @ NIAGARA @ MISSISSAU	GA ®	SARI	NIA			WV	w.paracellal	os.com	6	Pa	ige	of	
Client Name: Paterson Group			Project	Reference: P	E242.	2				1	1	V 1	
			Quote #				100	1 100	TAT:	Regula	ir [[]3 Day	
Address: 154 Columnade Rd.			PO#	12527				•		2 Day	- 1	[]1 Day	
			Email A	ddrees.				0	Date Re	quired:			
Telephone: 613-226-7381			W	Warey@	Palerson	ngro	yp.ca						
Criteria: []O. Reg. 153/04 Table O. Reg. 153/11 (Current) Tal	ble Z I	RSCI	Filing	O. Reg. 558/00	PWQO	CCME] SUB (Storm) SUB (Sanit	ary) Munic	ipality;		[] Othe	er:
Matrix Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water) SS (S	Storm/Sar	nitary Sev	wer) P(F	Paint) A (Air) O (Ot	her)			Req	uired Ar	alyses			
Paracel Order Number:			S		12 1 1				T				$\overline{}$
1226057	цх	Air Volume	of Containers	Sample	Taken	3	200						
Sample ID/Location Name	Matrix	Air	Jo#	Date	Time	Sylv	7						
1 BH1-6W2	SW		2	Ine 28/12	1:30 PM	+	7	->	chlu	1 1	~ .	ial	
2	-			110					CALLY.			101	
3													
4													
5													
6													+
7													+
8													+
9													
10													+
Comments:				1 10								of Delivery:	
Relinguished By (Print& Sign):	Received	by Drive	er/Depot	ius <u>e</u>		ed at Lab: DEPOR	N		Verified	By:	100	-jL	
m his the a-11 -	Date/Tim emperat		100	12 40	Date/Ti Temper	me: 70	N95 290	13 .05.08	Date/Tir			25/12 N/A	2. 5:1

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South

Nepean, ON K2E 7J5 Attn: Mark D'Arcy

Client PO: 18986 Project: PE2422 Custody: 106254

Report Date: 7-Dec-2015 Order Date: 27-Nov-2015

Revised Repd Order #: 1548392

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1548392-01	BH6-GW1
1548392-02	BH7-GW1
1548392-03	BH8-GW1
1548392-04	BH6-GW1

Approved By:

Mark Foto, M.Sc. Lab Supervisor

Certificate of Analysis Report Date: 07-Dec-2015 Client: Paterson Group Consulting Engineers Order Date: 27-Nov-2015 Client PO: 18986

Project Description: PE2422

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	30-Nov-15	1-Dec-15
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	28-Nov-15	28-Nov-15
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	2-Dec-15	2-Dec-15
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	30-Nov-15	1-Dec-15

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 18986

Report Date: 07-Dec-2015 Order Date: 27-Nov-2015 **Project Description: PE2422**

BH7-GW1 Client ID: BH6-GW1 BH8-GW1 BH6-GW1 Sample Date: 27-Nov-15 27-Nov-15 27-Nov-15 27-Nov-15 1548392-01 1548392-02 1548392-03 1548392-04 Sample ID: Water Water Water Water MDL/Units Volatiles Acetone 5.0 ug/L < 5.0 < 5.0 < 5.0 < 5.0 0.5 ug/L Benzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Bromodichloromethane 0.9 < 0.5 < 0.5 0.9 0.5 ug/L < 0.5 **Bromoform** < 0.5 < 0.5 < 0.5 0.5 ug/L < 0.5 Bromomethane < 0.5 < 0.5 < 0.5 0.2 ug/L < 0.2 <0.2 Carbon Tetrachloride < 0.2 < 0.2 0.5 ug/L Chlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 Chloroform 0.5 ug/L 11.8 < 0.5 1.6 11.8 Dibromochloromethane 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 1.0 ug/L Dichlorodifluoromethane <1.0 <1.0 <1.0 <1.0 0.5 ug/L 1.2-Dichlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1.3-Dichlorobenzene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L < 0.5 1,4-Dichlorobenzene < 0.5 < 0.5 < 0.5 0.5 ug/L 1.1-Dichloroethane < 0.5 < 0.5 < 0.5 <0.5 0.5 ug/L 1.2-Dichloroethane < 0.5 <0.5 < 0.5 < 0.5 0.5 ug/L 1,1-Dichloroethylene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L cis-1,2-Dichloroethylene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L trans-1,2-Dichloroethylene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1,2-Dichloropropane < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L cis-1,3-Dichloropropylene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L trans-1,3-Dichloropropylene < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1,3-Dichloropropene, total < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L Ethylbenzene < 0.5 < 0.5 < 0.5 < 0.5 0.2 ug/L Ethylene dibromide (dibromoethai <0.2 < 0.2 <0.2 < 0.2 1.0 ug/L <1.0 <1.0 <1.0 Hexane <1.0 5.0 ug/L Methyl Ethyl Ketone (2-Butanone) <5.0 < 5.0 <5.0 <5.0 5.0 ug/L Methyl Isobutyl Ketone < 5.0 < 5.0 < 5.0 < 5.0 2.0 ug/L <2.0 Methyl tert-butyl ether < 2.0 < 2.0 < 2.0 5.0 ug/L Methylene Chloride <5.0 < 5.0 <5.0 < 5.0 0.5 ug/L Styrene <0.5 < 0.5 < 0.5 <0.5 1,1,1,2-Tetrachloroethane 0.5 ug/L < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L 1.1.2.2-Tetrachloroethane < 0.5 < 0.5 < 0.5 < 0.5 0.5 ug/L < 0.5 Tetrachloroethylene < 0.5 < 0.5 < 0.5 0.5 ug/L Toluene 1.4 < 0.5 < 0.5 1.0 0.5 ug/L 1,1,1-Trichloroethane < 0.5 < 0.5 < 0.5 < 0.5

Report Date: 07-Dec-2015

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 27-Nov-2015 Client PO: 18986 **Project Description: PE2422**

	Client ID: Sample Date: Sample ID: MDL/Units	BH6-GW1 27-Nov-15 1548392-01 Water	BH7-GW1 27-Nov-15 1548392-02 Water	BH8-GW1 27-Nov-15 1548392-03 Water	BH6-GW1 27-Nov-15 1548392-04 Water
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	0.8	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	1.3	<0.5	<0.5	0.9
4-Bromofluorobenzene	Surrogate	97.2%	94.8%	95.5%	98.3%
Dibromofluoromethane	Surrogate	108%	113%	114%	116%
Toluene-d8	Surrogate	95.6%	98.5%	97.6%	97.1%
Hydrocarbons				•	
F1 PHCs (C6-C10)	25 ug/L	<25	<25	<25	<25
F2 PHCs (C10-C16)	100 ug/L	-	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	-	690	<100	-
F4 PHCs (C34-C50)	100 ug/L	-	<100	<100	-
F1 + F2 PHCs	125 ug/L	-	<125	<125	-
F3 + F4 PHCs	200 ug/L	-	690	<200	-
Semi-Volatiles	•			•	
Acenaphthene	0.05 ug/L	-	0.08	-	-
Acenaphthylene	0.05 ug/L	-	<0.05	-	-
Anthracene	0.01 ug/L	-	0.07	-	-
Benzo [a] anthracene	0.01 ug/L	-	0.42	-	-
Benzo [a] pyrene	0.01 ug/L	-	0.46	-	-
Benzo [b] fluoranthene	0.05 ug/L	-	0.73	-	-
Benzo [g,h,i] perylene	0.05 ug/L	-	0.38	-	-
Benzo [k] fluoranthene	0.05 ug/L	-	0.54	-	-
Chrysene	0.05 ug/L	-	0.56	-	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	0.10	-	-
Fluoranthene	0.01 ug/L	-	0.52	-	-
Fluorene	0.05 ug/L	-	0.06	-	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	0.33	-	-
1-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
2-Methylnaphthalene	0.05 ug/L	-	<0.05	-	-
Methylnaphthalene (1&2)	0.10 ug/L	-	<0.10	-	-
Naphthalene	0.05 ug/L	_	<0.05	-	-
Phenanthrene	0.05 ug/L	-	0.57	-	-
Pyrene	0.01 ug/L	-	0.47	-	_

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 18986

Report Date: 07-Dec-2015 Order Date: 27-Nov-2015

Project Description: PE2422

	Client ID: Sample Date:		BH7-GW1 27-Nov-15	BH8-GW1 27-Nov-15	BH6-GW1 27-Nov-15
	Sample ID:		1548392-02	1548392-03	1548392-04
	MDL/Units	Water	Water	Water	Water
2-Fluorobiphenyl	Surrogate	-	89.2%	-	-
Terphenyl-d14	Surrogate	-	84.2%	-	-

Report Date: 07-Dec-2015

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client:Paterson Group Consulting EngineersOrder Date: 27-Nov-2015Client PO: 18986Project Description: PE2422

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ua/l						
F2 PHCs (C10-C16)	ND ND	25 100	ug/L ug/L						
F3 PHCs (C16-C34)	ND ND	100	ug/L ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L ug/L						
	ND	100	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND ND	0.01	ug/L						
Benzo [a] anthracene Benzo [a] pyrene	ND ND	0.01 0.01	ug/L						
Benzo [b] fluoranthene	ND ND	0.01	ug/L ug/L						
Benzo [g,h,i] perylene	ND ND	0.05	ug/L ug/L						
Benzo [k] fluoranthene	ND	0.05	ug/L						
Chrysene	ND	0.05	ug/L						
Dibenzo [a,h] anthracene	ND	0.05	ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.5		ug/L		92.7	50-140			
Surrogate: Terphenyl-d14	24.2		ug/L		121	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND	0.2	ug/L						
Chlorobenzene	ND	0.5	ug/L						
Chloroform	ND	0.5	ug/L						
Dibromochloromethane	ND	0.5	ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane 1.2-Dichloroethane	ND ND	0.5	ug/L						
1,2-Dichloroethane 1,1-Dichloroethylene	ND ND	0.5 0.5	ug/L						
cis-1,2-Dichloroethylene	ND ND	0.5 0.5	ug/L						
trans-1,2-Dichloroethylene	ND ND	0.5 0.5	ug/L ug/L						
1,2-Dichloropropane	ND ND	0.5	ug/L ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L						
Methyl Isobutyl Ketone	ND	5.0	ug/L						
Methyl tert-butyl ether	ND	2.0	ug/L						
Methylene Chloride	ND	5.0	ug/L						
Styrene	ND	0.5	ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L						
1,1,2,2-Tetrachloroethane									

Certificate of Analysis

Client PO: 18986

Order #: 1548392

Report Date: 07-Dec-2015 Order Date: 27-Nov-2015

Project Description: PE2422

Method Quality Control: Blank

Client: Paterson Group Consulting Engineers

		Reporting				%REC		RPD		
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes	
Tetrachloroethylene	ND	0.5	ug/L							
Toluene	ND	0.5	ug/L							
1,1,1-Trichloroethane	ND	0.5	ug/L							
1,1,2-Trichloroethane	ND	0.5	ug/L							
Trichloroethylene	ND	0.5	ug/L							
Trichlorofluoromethane	ND	1.0	ug/L							
Vinyl chloride	ND	0.5	ug/L							
m,p-Xylenes	ND	0.5	ug/L							
o-Xylene	ND	0.5	ug/L							
Xylenes, total	ND	0.5	ug/L							
Surrogate: 4-Bromofluorobenzene	77.2		ug/L		96.4	50-140				
Surrogate: Dibromofluoromethane	94.3		ug/L		118	50-140				
Surrogate: Toluene-d8	77.6		ug/L		97.0	50-140				

Report Date: 07-Dec-2015

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 27-Nov-2015 Client PO: 18986 **Project Description: PE2422**

Method Quality Control: Duplicate

A		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND	0.5	ug/L	ND				30	
Bromodichloromethane	ND	0.5	ug/L	ND				30	
Bromoform	ND	0.5	ug/L	ND				30	
Bromomethane	ND	0.5	ug/L	ND				30	
Carbon Tetrachloride	ND	0.2	ug/L	ND				30	
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND ND	0.5	ug/L ug/L	ND				30	
trans-1,2-Dichloroethylene	ND ND	0.5	ug/L ug/L	ND ND				30	
		0.5						30	
1,2-Dichloropropane	ND		ug/L	ND					
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND	0.5	ug/L	ND				30	
o-Xylene	ND	0.5	ug/L	ND				30	
Surrogate: 4-Bromofluorobenzene	78.3		ug/L	ND	97.9	50-140			
Surrogate: Dibromofluoromethane	95.5		ug/L	ND	119	50-140			
Surrogate: Toluene-d8	78.6		ug/L	ND	98.3	50-140			

Certificate of Analysis Report Date: 07-Dec-2015 Client: Paterson Group Consulting Engineers Order Date: 27-Nov-2015 Client PO: 18986 **Project Description: PE2422**

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1960	25	ug/L	ND	98.2	68-117			
F2 PHCs (C10-C16)	1500	100	ug/L	ND	83.2	60-140			
F3 PHCs (C16-C34)	2750	100	ug/L	ND	73.9	60-140			
F4 PHCs (C34-C50)	1920	100	ug/L	ND	77.3	60-140			
Semi-Volatiles									
Acenaphthene	4.72	0.05	ug/L	ND	94.3	50-140			
Acenaphthylene	4.15	0.05	ug/L	ND	83.0	50-140			
Anthracene	4.37	0.01	ug/L	ND	87.4	50-140			
Benzo [a] anthracene	4.09	0.01	ug/L	ND	81.9	50-140			
Benzo [a] pyrene	4.10	0.01	ug/L	ND	82.0	50-140			
Benzo [b] fluoranthene	4.43	0.05	ug/L	ND	88.5	50-140			
Benzo [g,h,i] perylene	4.48	0.05	ug/L	ND	89.6	50-140			
Benzo [k] fluoranthene	4.75	0.05	ug/L	ND	95.1	50-140			
Chrysene	4.37	0.05	ug/L	ND	87.5	50-140			
Dibenzo [a,h] anthracene	4.55	0.05	ug/L	ND	91.0	50-140			
Fluoranthene	4.39	0.01	ug/L	ND	87.8	50-140			
Fluorene	4.48	0.05	ug/L	ND	89.6	50-140			
Indeno [1,2,3-cd] pyrene	4.32	0.05	ug/L	ND	86.3	50-140			
1-Methylnaphthalene	4.82	0.05	ug/L	ND	96.4	50-140			
2-Methylnaphthalene	5.17	0.05	ug/L	ND	103	50-140			
Naphthalene	4.12	0.05	ug/L	ND	82.5	50-140			
Phenanthrene	4.21	0.05	ug/L	ND	84.2	50-140			
Pyrene	4.55	0.01	ug/L	ND	90.9	50-140			
Surrogate: 2-Fluorobiphenyl	15.8	0.01	ug/L	ND	79.1	50-140			
Volatiles	70.0		ug/L		70.7	00 7 70			
Acetone	72.0	5.0	ug/L	ND	72.0	50-140			
Benzene	35.1	0.5	ug/L	ND	87.8	50-140			
Bromodichloromethane	41.9	0.5	ug/L	ND	105	50-140			
Bromoform	35.5	0.5	ug/L	ND	88.7	50-140			
Bromomethane	29.3	0.5	ug/L	ND	73.3	50-140			
Carbon Tetrachloride	33.2	0.2	ug/L	ND	83.1	50-140			
Chlorobenzene	33.5	0.5	ug/L	ND	83.8	50-140			
Chloroform	34.9	0.5	ug/L	ND	87.2	50-140			
Dibromochloromethane	36.3	0.5	ug/L ug/L	ND	90.7	50-140			
Dichlorodifluoromethane	37.7	1.0	ug/L	ND	94.3	50-140			
1.2-Dichlorobenzene	32.8	0.5	ug/L ug/L	ND	94.3 82.0	50-140			
1,3-Dichlorobenzene	35.9	0.5	ug/L	ND	89.8	50-140			
1,4-Dichlorobenzene	31.2	0.5	ug/L ug/L	ND	78.0	50-140			
1,1-Dichloroethane	32.6	0.5		ND	81.6	50-140			
1,2-Dichloroethane	32.6 29.5	0.5 0.5	ug/L ug/L	ND ND	73.7	50-140 50-140			
1,1-Dichloroethylene	29.5 33.7			ND ND	73.7 84.3	50-140 50-140			
cis-1,2-Dichloroethylene	33.7 37.9	0.5 0.5	ug/L			50-140 50-140			
trans-1,2-Dichloroethylene		0.5	ug/L	ND	94.8				
	33.8	0.5 0.5	ug/L	ND	84.4	50-140 50-140			
1,2-Dichloropropane	33.5	0.5	ug/L	ND	83.8	50-140			
cis-1,3-Dichloropropylene	33.4	0.5	ug/L	ND	83.5	50-140			
trans-1,3-Dichloropropylene	25.6	0.5	ug/L	ND	64.0	50-140			
Ethylbenzene	32.4	0.5	ug/L	ND	80.9	50-140			
Ethylene dibromide (dibromoethane	35.7	0.2	ug/L	ND	89.3	50-140			
Hexane	29.9	1.0	ug/L	ND	74.8	50-140			
Methyl Ethyl Ketone (2-Butanone)	72.5	5.0	ug/L	ND	72.5	50-140			
Methyl Isobutyl Ketone	66.9	5.0	ug/L	ND	66.9	50-140			

Report Date: 07-Dec-2015 Order Date: 27-Nov-2015

Project Description: PE2422

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 18986

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl tert-butyl ether	99.0	2.0	ug/L	ND	99.0	50-140			
Methylene Chloride	33.1	5.0	ug/L	ND	82.7	50-140			
Styrene	36.2	0.5	ug/L	ND	90.5	50-140			
1,1,1,2-Tetrachloroethane	33.9	0.5	ug/L	ND	84.7	50-140			
1,1,2,2-Tetrachloroethane	47.1	0.5	ug/L	ND	118	50-140			
Tetrachloroethylene	30.6	0.5	ug/L	ND	76.5	50-140			
Toluene	33.7	0.5	ug/L	ND	84.2	50-140			
1,1,1-Trichloroethane	35.1	0.5	ug/L	ND	87.8	50-140			
1,1,2-Trichloroethane	41.6	0.5	ug/L	ND	104	50-140			
Trichloroethylene	35.5	0.5	ug/L	ND	88.8	50-140			
Trichlorofluoromethane	26.4	1.0	ug/L	ND	66.1	50-140			
Vinyl chloride	32.6	0.5	ug/L	ND	81.6	50-140			
m,p-Xylenes	68.6	0.5	ug/L	ND	85.8	50-140			
o-Xylene	34.9	0.5	ug/L	ND	87.2	50-140			

Report Date: 07-Dec-2015

Certificate of Analysis
Client: Paterson Group Consulting Engineers

Client:Paterson Group Consulting EngineersOrder Date: 27-Nov-2015Client PO: 18986Project Description: PE2422

Qualifier Notes:

None

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - This report includes additional VOC/F1 data (duplicate vial analysed for BH6-GW1).

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

Head Office 300-2319 St. Laurent Blvd. Ottawa, Ontario K1G 4J8 p: 1-800-749-1947 e: paracel@paracellabs.com www.paracellabs.com

Chain of Custody (Lab Use Only)

Nº 106254

au .																Page	e(_ of	1	
Client 1	PATERSON GROW			74 (0)	Project Reference	PE2422	7								TAT	Rėgula		3 Day	
	Name: MARE D'ARLY				Quote#	Allera									5	7.		3 Day	
Addres	S:				PO# 1898	6										[] 2 Day	[] 1 Day	
	154 COLONNADIS				Email Addrage										Date Re	equired:			
Telepho	one: 613-226-7381				Mary	a puto	VSOV	101	· con-	0.	ca					18		7	
Criteri	a: [X] O. Reg. 153/04 (As Amended) Table [] RSC Fi	ling [] O. F	Reg. 558/	/00 []1	PWQO []CCME	[]SUB (Sto	nm) [SU	B (Sa	nitar	/) Mu	nicipal	ity:		_[](Other:			
5232 10 10	Type: S (Soil/Sed.) GW (Ground Water) SW (Surface Water								ed A										
Parac	el Order Number:			S			-		Г			_		T					
	1548392	rix	Air Volume	# of Containers	Sample	Taken	PHCs F1-F4+BTEX	S		Metals by ICP		NC)	(MC)						
	Sample ID/Location Name	Matrix	Air	# of	Date	Time	PHC	VOCs	PAHs	Meta	Hg	CrVI	4						
1	BH6-GW1	6w		2	NOV 27/15	Am		X					+						
2	BH7-GW1	6W		4			X	¥	X			\dagger							
3	BH8-OW1	6W		3	V		4	-				+							
4												\top							
5												\top							
6												\dagger							
7											П								
8											П	\dagger							
9											П								
10												\top							
Comm	7				1	В			1	II.					be	Method	of Delive	ry:	
	Relinquished by (Sign): Received by Driver/Depo			12 12 12 12 12 12 12 12 12 12 12 12 12 1							Verifie	u. 1	//	6	15				
Date/Ti	ished By (Print):	Date/Tin				Date/	Time:\	1	270	H	5		17.20	Date/Ti	ate/Time: NOV 27/15 575				
Date/11	IIIC.	Tempera	ture:	0(Temp	erature:	17		C				htt Vor	God Lan	D. 17	en		

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Paterson Group Consulting Engineers

154 Colonnade Road South Nepean, ON K2E 7J5 Attn: Adrian Menyhart

Client PO: 24864 Project: PE4330 Custody: 44416

Report Date: 9-Aug-2018 Order Date: 3-Aug-2018

Order #: 1831485

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
1831485-01	BH6-GW1
1831485-02	BH9-GW1
1831485-03	BH10-GW1
1831485-04	DUP

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 3-Aug-2018

Client PO: 24864

Report Date: 09-Aug-2018

Order Date: 3-Aug-2018

Project Description: PE4330

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
PHC F1	CWS Tier 1 - P&T GC-FID	6-Aug-18	7-Aug-18
PHCs F2 to F4	CWS Tier 1 - GC-FID, extraction	8-Aug-18	9-Aug-18
REG 153: PAHs by GC-MS	EPA 625 - GC-MS, extraction	7-Aug-18	8-Aug-18
REG 153: VOCs by P&T GC/MS	EPA 624 - P&T GC-MS	6-Aug-18	7-Aug-18

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Client PO: 24864 **Project Description: PE4330**

Γ	Client ID: Sample Date: Sample ID: MDL/Units	BH6-GW1 08/02/2018 00:00 1831485-01 Ground Water	BH9-GW1 08/02/2018 00:00 1831485-02 Ground Water	BH10-GW1 08/02/2018 00:00 1831485-03 Ground Water	DUP 08/02/2018 00:00 1831485-04 Ground Water
Volatiles			•		
Acetone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Benzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromoform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Bromomethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Carbon Tetrachloride	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Chloroform	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dibromochloromethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Dichlorodifluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,4-Dichlorobenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,2-Dichloropropane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,3-Dichloropropene, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Ethylene dibromide (dibromoethan	0.2 ug/L	<0.2	<0.2	<0.2	<0.2
Hexane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Methyl Ethyl Ketone (2-Butanone)	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl Isobutyl Ketone	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Methyl tert-butyl ether	2.0 ug/L	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5.0 ug/L	<5.0	<5.0	<5.0	<5.0
Styrene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Tetrachloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Toluene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
1,1,1-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5

Report Date: 09-Aug-2018

Order Date: 3-Aug-2018

Report Date: 09-Aug-2018

Order Date: 3-Aug-2018

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Client PO: 24864 **Project Description: PE4330**

	Client ID: Sample Date: Sample ID:	BH6-GW1 08/02/2018 00:00 1831485-01	BH9-GW1 08/02/2018 00:00 1831485-02	BH10-GW1 08/02/2018 00:00 1831485-03	DUP 08/02/2018 00:00 1831485-04
=	MDL/Units	Ground Water	Ground Water	Ground Water	Ground Water
1,1,2-Trichloroethane	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichloroethylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Trichlorofluoromethane	1.0 ug/L	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
m,p-Xylenes	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
o-Xylene	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
Xylenes, total	0.5 ug/L	<0.5	<0.5	<0.5	<0.5
4-Bromofluorobenzene	Surrogate	93.2%	93.2%	92.8%	94.3%
Dibromofluoromethane	Surrogate	90.9%	93.9%	92.0%	116%
Toluene-d8	Surrogate	93.9%	96.1%	93.7%	94.8%
Hydrocarbons	OF/I		1		T 1
F1 PHCs (C6-C10)	25 ug/L	-	<25	<25	-
F2 PHCs (C10-C16)	100 ug/L	-	<100	<100	-
F3 PHCs (C16-C34)	100 ug/L	-	<100	4490 [1]	-
F4 PHCs (C34-C50)	100 ug/L	-	<100	471	-
Semi-Volatiles					
Acenaphthene	0.05 ug/L	-	-	<0.05	-
Acenaphthylene	0.05 ug/L	-	-	<0.05	-
Anthracene	0.01 ug/L	-	-	<0.01	-
Benzo [a] anthracene	0.01 ug/L	-	-	<0.01	-
Benzo [a] pyrene	0.01 ug/L	-	-	<0.01	-
Benzo [b] fluoranthene	0.05 ug/L	-	-	<0.05	-
Benzo [g,h,i] perylene	0.05 ug/L	-	-	<0.05	-
Benzo [k] fluoranthene	0.05 ug/L	-	-	<0.05	-
Chrysene	0.05 ug/L	-	-	<0.05	-
Dibenzo [a,h] anthracene	0.05 ug/L	-	-	<0.05	-
Fluoranthene	0.01 ug/L	-	-	<0.01	-
Fluorene	0.05 ug/L	-	-	<0.05	-
Indeno [1,2,3-cd] pyrene	0.05 ug/L	-	-	<0.05	-
1-Methylnaphthalene	0.05 ug/L	-	-	<0.05	-
2-Methylnaphthalene	0.05 ug/L	-	-	<0.05	-
Methylnaphthalene (1&2)	0.10 ug/L	-	-	<0.10	-
Naphthalene	0.05 ug/L	-	-	<0.05	-
Phenanthrene	0.05 ug/L	-	-	<0.05	-
Pyrene	0.01 ug/L	-	-	<0.01	-
2-Fluorobiphenyl	Surrogate	-	-	86.2%	-
Terphenyl-d14	Surrogate	-	-	106%	-

Report Date: 09-Aug-2018 Order Date: 3-Aug-2018

Project Description: PE4330

Certificate of Analysis **Client: Paterson Group Consulting Engineers**

Client PO: 24864

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L						
F2 PHCs (C10-C16)	ND	100	ug/L						
F3 PHCs (C16-C34)	ND	100	ug/L						
F4 PHCs (C34-C50)	ND	100	ug/L						
Semi-Volatiles									
Acenaphthene	ND	0.05	ug/L						
Acenaphthylene	ND	0.05	ug/L						
Anthracene	ND	0.01	ug/L						
Benzo [a] anthracene	ND	0.01	ug/L						
Benzo [a] pyrene	ND	0.01	ug/L						
Benzo [b] fluoranthene	ND	0.05	ug/L						
Benzo [g,h,i] perylene	ND ND	0.05 0.05	ug/L						
Benzo [k] fluoranthene Chrysene	ND ND	0.05	ug/L ug/L						
Dibenzo [a,h] anthracene	ND ND	0.05	ug/L ug/L						
Fluoranthene	ND	0.01	ug/L						
Fluorene	ND	0.05	ug/L						
Indeno [1,2,3-cd] pyrene	ND	0.05	ug/L						
1-Methylnaphthalene	ND	0.05	ug/L						
2-Methylnaphthalene	ND	0.05	ug/L						
Methylnaphthalene (1&2)	ND	0.10	ug/L						
Naphthalene	ND	0.05	ug/L						
Phenanthrene	ND	0.05	ug/L						
Pyrene	ND	0.01	ug/L						
Surrogate: 2-Fluorobiphenyl	18.7		ug/L		93.7	50-140			
Surrogate: Terphenyl-d14	18.5		ug/L		92.3	50-140			
Volatiles									
Acetone	ND	5.0	ug/L						
Benzene	ND	0.5	ug/L						
Bromodichloromethane	ND	0.5	ug/L						
Bromoform	ND	0.5	ug/L						
Bromomethane	ND	0.5	ug/L						
Carbon Tetrachloride	ND ND	0.2 0.5	ug/L						
Chlorobenzene Chloroform	ND ND	0.5	ug/L ug/L						
Dibromochloromethane	ND ND	0.5	ug/L ug/L						
Dichlorodifluoromethane	ND	1.0	ug/L ug/L						
1,2-Dichlorobenzene	ND	0.5	ug/L						
1,3-Dichlorobenzene	ND	0.5	ug/L						
1,4-Dichlorobenzene	ND	0.5	ug/L						
1,1-Dichloroethane	ND	0.5	ug/L						
1,2-Dichloroethane	ND	0.5	ug/L						
1,1-Dichloroethylene	ND	0.5	ug/L						
cis-1,2-Dichloroethylene	ND	0.5	ug/L						
trans-1,2-Dichloroethylene	ND	0.5	ug/L						
1,2-Dichloropropane	ND	0.5	ug/L						
cis-1,3-Dichloropropylene	ND	0.5	ug/L						
trans-1,3-Dichloropropylene	ND	0.5	ug/L						
1,3-Dichloropropene, total	ND	0.5	ug/L						
Ethylbenzene	ND	0.5	ug/L						
Ethylene dibromide (dibromoethane	ND	0.2	ug/L						
Hexane Methyl Ethyl Ketono (2 Butanono)	ND	1.0	ug/L						
Methyl Ethyl Ketone (2-Butanone) Methyl Isobutyl Ketone	ND ND	5.0 5.0	ug/L						
Methyl tert-butyl ether	ND ND	5.0 2.0	ug/L ug/L						
Methylene Chloride	ND ND	5.0	ug/L ug/L						
Styrene	ND ND	0.5	ug/L ug/L						
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L ug/L						
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L						

Certificate of Analysis

Order #: 1831485

Report Date: 09-Aug-2018 Order Date: 3-Aug-2018

Client: Paterson Group Consulting EngineersOrder Date: 3-Aug-2018Client PO: 24864Project Description: PE4330

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Tetrachloroethylene	ND	0.5	ug/L						
Toluene	ND	0.5	ug/L						
1,1,1-Trichloroethane	ND	0.5	ug/L						
1,1,2-Trichloroethane	ND	0.5	ug/L						
Trichloroethylene	ND	0.5	ug/L						
Trichlorofluoromethane	ND	1.0	ug/L						
Vinyl chloride	ND	0.5	ug/L						
m,p-Xylenes	ND	0.5	ug/L						
o-Xylene	ND	0.5	ug/L						
Xylenes, total	ND	0.5	ug/L						
Surrogate: 4-Bromofluorobenzene	79.9		ug/L		99.9	50-140			
Surrogate: Dibromofluoromethane	<i>75.8</i>		ug/L		94.8	50-140			
Surrogate: Toluene-d8	72.5		ug/L		90.6	50-140			

Certificate of Analysis

Order #: 1831485

Report Date: 09-Aug-2018 Order Date: 3-Aug-2018

Client: Paterson Group Consulting EngineersOrder Date: 3-Aug-2018Client PO: 24864Project Description: PE4330

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	ND	25	ug/L	ND				30	
Volatiles									
Acetone	ND	5.0	ug/L	ND				30	
Benzene	ND ND	0.5	ug/L ug/L	ND				30	
Bromodichloromethane	ND ND	0.5	ug/L ug/L	ND ND				30	
Bromoform	ND ND	0.5	ug/L ug/L	ND ND				30	
	ND ND	0.5							
Bromomethane Carbon Tetrachloride	ND ND	0.5	ug/L	ND				30 30	
			ug/L	ND					
Chlorobenzene	ND	0.5	ug/L	ND				30	
Chloroform	ND	0.5	ug/L	ND				30	
Dibromochloromethane	ND	0.5	ug/L	ND				30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND				30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND				30	
1,1-Dichloroethane	ND	0.5	ug/L	ND				30	
1,2-Dichloroethane	ND	0.5	ug/L	ND				30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND				30	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND				30	
1,2-Dichloropropane	ND	0.5	ug/L	ND				30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND				30	
Ethylbenzene	ND	0.5	ug/L	ND				30	
Ethylene dibromide (dibromoethane	ND	0.2	ug/L	ND				30	
Hexane	ND	1.0	ug/L	ND				30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND				30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND				30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND				30	
Methylene Chloride	ND	5.0	ug/L	ND				30	
Styrene	ND	0.5	ug/L	ND				30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND				30	
Tetrachloroethylene	ND	0.5	ug/L	ND				30	
Toluene	ND	0.5	ug/L	ND				30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND				30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND				30	
Trichloroethylene	ND	0.5	ug/L	ND				30	
Trichlorofluoromethane	ND	1.0	ug/L	ND				30	
Vinyl chloride	ND	0.5	ug/L	ND				30	
m,p-Xylenes	ND ND	0.5	ug/L ug/L	ND				30	
o-Xylene	ND ND	0.5	ug/L ug/L	ND				30	
•	73.5	0.5		ND	01.9	50-140		30	
Surrogate: 4-Bromofluorobenzene			ug/L		91.8				
Surrogate: Dibromofluoromethane	70.6		ug/L		88.2	50-140			
Surrogate: Toluene-d8	74.2		ug/L		92.7	50-140			

Report Date: 09-Aug-2018

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 3-Aug-2018 Client PO: 24864 **Project Description: PE4330**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Hydrocarbons									
F1 PHCs (C6-C10)	1760	25	ug/L		88.0	68-117			
F2 PHCs (C10-C16)	1780	100	ug/L		111	60-140			
F3 PHCs (C16-C34)	4640	100	ug/L		118	60-140			
F4 PHCs (C34-C50)	3280	100	ug/L		132	60-140			
Semi-Volatiles									
Acenaphthene	4.11	0.05	ug/L		82.2	50-140			
Acenaphthylene	3.78	0.05	ug/L		75.5	50-140			
Anthracene	5.12	0.01	ug/L		102	50-140			
Benzo [a] anthracene	4.55	0.01	ug/L		91.0	50-140			
Benzo [a] pyrene	5.36	0.01	ug/L		107	50-140			
Benzo [b] fluoranthene	5.90	0.05	ug/L		118	50-140			
Benzo [g,h,i] perylene	5.29	0.05	ug/L		106	50-140			
Benzo [k] fluoranthene	5.85	0.05	ug/L		117	50-140			
Chrysene	5.19	0.05	ug/L		104	50-140			
Dibenzo [a,h] anthracene	5.39	0.05	ug/L		108	50-140			
Fluoranthene	4.29	0.01	ug/L		85.7	50-140			
Fluorene	4.37	0.05	ug/L		87.3	50-140			
Indeno [1,2,3-cd] pyrene	5.66	0.05	ug/L		113	50-140			
1-Methylnaphthalene	5.07	0.05	ug/L		101	50-140			
2-Methylnaphthalene	5.61	0.05	ug/L		112	50-140			
Naphthalene	4.74	0.05	ug/L		94.7	50-140			
Phenanthrene	4.72	0.05	ug/L		94.4	50-140			
Pyrene	4.45	0.01	ug/L		89.0	50-140			
Surrogate: 2-Fluorobiphenyl	16.7		ug/L		83. <i>4</i>	50-140			
Volatiles									
Acetone	76.4	5.0	ug/L		76.4	50-140			
Benzene	35.5	0.5	ug/L		88.7	60-130			
Bromodichloromethane	39.4	0.5	ug/L		98.6	60-130			
Bromoform	47.3	0.5	ug/L		118	60-130			
Bromomethane	27.1	0.5	ug/L		67.8	50-140			
Carbon Tetrachloride	40.8	0.2	ug/L		102	60-130			
Chlorobenzene	38.4	0.5	ug/L		96.0	60-130			
Chloroform	35.8	0.5	ug/L		89.6	60-130			
Dibromochloromethane	45.9	0.5	ug/L		115	60-130			
Dichlorodifluoromethane	29.6	1.0	ug/L		74.1	50-140			
1,2-Dichlorobenzene	43.7	0.5	ug/L		109	60-130			
1,3-Dichlorobenzene	44.7	0.5	ug/L		112	60-130			
1,4-Dichlorobenzene	43.7	0.5	ug/L		109	60-130			
1,1-Dichloroethane	31.4	0.5	ug/L		78.4	60-130			
1,2-Dichloroethane	39.8	0.5	ug/L		99.4	60-130			
1,1-Dichloroethylene	28.9	0.5	ug/L		72.3	60-130			
cis-1,2-Dichloroethylene	25.5	0.5	ug/L		63.7	60-130			
trans-1,2-Dichloroethylene	29.9	0.5	ug/L		74.8	60-130			
1,2-Dichloropropane	37.3	0.5	ug/L		93.2	60-130			
cis-1,3-Dichloropropylene	39.1	0.5	ug/L		97.8	60-130			
trans-1,3-Dichloropropylene	41.9	0.5	ug/L		105	60-130			
Ethylbenzene	40.1	0.5	ug/L		100	60-130			
Ethylene dibromide (dibromoethane	42.2	0.2	ug/L		105	60-130			
Hexane	40.1	1.0	ug/L		100	60-130			
Methyl Ethyl Ketone (2-Butanone)	115	5.0	ug/L		115	50-140			
Methyl Isobutyl Ketone	106	5.0	ug/L		106	50-140			

Certificate of Analysis

Order #: 1831485

Report Date: 09-Aug-2018 Order Date: 3-Aug-2018

Client: Paterson Group Consulting Engineers Client PO: 24864 **Project Description: PE4330**

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Methyl tert-butyl ether	88.0	2.0	ug/L		88.0	50-140			
Methylene Chloride	28.2	5.0	ug/L		70.4	60-130			
Styrene	38.2	0.5	ug/L		95.6	60-130			
1,1,1,2-Tetrachloroethane	44.9	0.5	ug/L		112	60-130			
1,1,2,2-Tetrachloroethane	42.0	0.5	ug/L		105	60-130			
Tetrachloroethylene	42.1	0.5	ug/L		105	60-130			
Toluene	37.9	0.5	ug/L		94.8	60-130			
1,1,1-Trichloroethane	38.6	0.5	ug/L		96.6	60-130			
1,1,2-Trichloroethane	39.6	0.5	ug/L		99.0	60-130			
Trichloroethylene	34.6	0.5	ug/L		86.5	60-130			
Trichlorofluoromethane	33.3	1.0	ug/L		83.3	60-130			
Vinyl chloride	32.9	0.5	ug/L		82.2	50-140			
m,p-Xylenes	84.2	0.5	ug/L		105	60-130			
o-Xylene	41.9	0.5	ug/L		105	60-130			

Certificate of Analysis

Client: Paterson Group Consulting Engineers

Order Date: 3-Aug-2018

Client PO: 24864

Project Description: PE4330

Qualifier Notes:

Sample Qualifiers:

1: Some peak(s) in the GC-FID Chromatogram are not typical of petroleum hydrocarbon distillates. May be the result of high concentrations of non-mineral based compounds not completely removed by the method cleanup. Results may be biased high.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

CCME PHC additional information:

- The method for the analysis of PHCs complies with the Reference Method for the CWS PHC and is validated for use in the laboratory. All prescribed quality criteria identified in the method has been met.
- F1 range corrected for BTEX.
- F2 to F3 ranges corrected for appropriate PAHs where available.
- The gravimetric heavy hydrocarbons (F4G) are not to be added to C6 to C50 hydrocarbons.
- In the case where F4 and F4G are both reported, the greater of the two results is to be used for comparison to CWS PHC criteria.

TRUSTED RESPONS RELIABLE

Temperature:

Chain of Custody (Lab Use Only)

44416 No

												P	age	of _	
Tient Name	E PATISON GREA			Project !	Reference:	PE4	730					Tu	rnarou	nd Tim	e:
Contact Nat	me paterson sons		Quote #							010	ay		3	Day	
Address:		122		Email Address: Amendent C prefor my ce Reg 558/00 PWQO COME SUB (Storm) SUB (Sanitary) Munici							a 2 D)ay	v.	O-R	egular
Telephone:	613 - 2 36 - +38	1			anc	aghen	CI	iles	or the	y, ic	Date	Requir	ed:	V SS	
Criteri	ia: 🗆 O. Reg. 153/04 (As Amended) Table 🔝 🗅	RSC Filing	0.1	Reg. 558	/00 □PWQO I	COME D	SUB (Stor	rm) OS	SUB (Sanit	tary) Munici	pality:_		_ 00	ther	
-	se: S (Soil Sed.) GW (Ground Water) SW (Surface Water)										ired A				
	Order Number: 1831485		Air Volume	of Containers	Sample		PAH	PHC F. FY	Voc						
	Sample ID/Location Name	Matrix	Air	# of	Date	Time	9	J.						_	
1	BH6 - GW1	014		2	holo 2 2018		de		1					_	
2	B49- 6W1	Su		23				1	1		_	_		-	
3	8410- GW	GW		*4			1	1	/				Н	_	-
4	DUP	JW.		2			-		1	_	-	-		_	_
5							-				-				
6				_			-			-	-				
7							+-				-	-		-	
8							+				-	-		-	
9										_	-	-		-	_
10													Method	of Delivery	
Comme	nts:													vift	
Relinquis	hed By (Sign):	Receive	ed by Dri	ver/Depo	1471		ved at Pab:	0-1		011111	Ventio	L			11:52
Relinquis	hed By (Print): 10 12 (Ar in	Date/Ti			°c		Time: 3			9146	Date/Time: 06/03/18 11-55a- pH Verified By:				
D. The	and the same of th	Temper	ature:			1600	william.	214	***		100	1000	70.F.C.		

Date Time